Methanation on exfoliated and supported MoS2

1989 ◽  
Vol 67 (5) ◽  
pp. 862-866 ◽  
Author(s):  
Guenter A. Scholz ◽  
S. Roy Morrison

The methanation reaction on MoS2 exfoliated to a thickness of a few layers or less and adsorbed onto alumina is found to be very small. However, by calcining and resulfiding the exfoliated MoS2 catalysts, greatly improved performance is achieved that is at least equal to the commercial catalysts based on ammonium heptamolybdate. The creation of molybdenum oxysulflde surface species therefore appears to be a necessary step toward producing significant methanation rates with exfoliated and supported MoS2. The methanation products are almost exclusively CO2 and CH4, their mole ratios near unity, with otherwise only very much smaller amounts of longer chain hydrocarbons. The activation energy for methanation is generally observed to be near 100 kJ/mol, with the overall reaction being first order in the carbon monoxide concentration and third order in the hydrogen concentration. In contrast to the transition-metal catalysts, no water could be detected in the reaction products of the molybdenum based catalyst. Keywords: methanation reaction on MoS2, exfoliated and supported MoS2 as catalyst.

1950 ◽  
Vol 28b (7) ◽  
pp. 358-372
Author(s):  
Cyrias Ouellet ◽  
Adrien E. Léger

The kinetics of the polymerization of acetylene to cuprene on a copper catalyst between 200° and 300 °C. have been studied manometrically in a static system. The maximum velocity of the autocatalytic reaction shows a first-order dependence upon acetylene pressure. The reaction is retarded in the presence of small amounts of oxygen but accelerated by preoxidation of the catalyst. The apparent activation energy, of about 10 kcal. per mole for cuprene growth between 210° and 280 °C., changes to about 40 kcal. per mole above 280 °C. at which temperature a second reaction seems to set in. Hydrogen, carbon monoxide, or nitric oxide has no effect on the reaction velocity. Series of five successive seedings have been obtained with cuprene originally grown on cuprite, and show an effect of aging of the cuprene.


1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


1968 ◽  
Vol 46 (2) ◽  
pp. 191-197 ◽  
Author(s):  
A. T. C. H. Tan ◽  
A. H. Sehon

The pyrolysis of phenylmercaptoacetic acid was investigated by the toluene-carrier technique over the temperature range 760–835 °K. The main products of the decomposition were phenyl mercaptan, carbon dioxide, acetic acid, phenyl methyl sulfide, carbon monoxide, and dibenzyl.The overall decomposition was a first-order reaction with respect to phenylmercaptoacetic acid and could be represented by the two parallel steps:[Formula: see text]Reaction [1] was shown to be a homogeneous first-order dissociation process, and its rate constant was represented by the expression[Formula: see text]The activation energy of this reaction, i.e. 58 kcal/mole, was identified with D(C6H5S—CH2COOH).


1986 ◽  
Vol 64 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Daniel Cozak ◽  
Abdelhakim Mardhy ◽  
André Morneau

The reaction of CpTi(CO)2 (1), Cp2TiCl (2), and Cp2TiCl2 (3) (Cp = η5-C5H5) with purine (PuH) and adenine (AdH) in organic solvents is described. The compound 1 reacts with both molecules in an oxidative fashion giving Cp2Ti(C5H3N4)(C5H4N4) (4) and (Cp2Ti)2(C5H3N5) (5) with concomitant liberation of molecular carbon monoxide and hydrogen (4:1) following a first order rate law in metal complex. The compound 2 forms an adduct compound Cp2TiCl(C5H4N4) (6) with PuH. Monosubstituted derivatives Cp2TiCl(C5H3N4) (7) and Cp2TiCl(C5H4N5) (8) are formed from the reaction of the deprotonated bases with 3. In addition to the usual elemental analysis, the characteristic ir, 1H nmr, epr, and ms results are given for the new compounds.


1984 ◽  
Vol 221 (2) ◽  
pp. 529-533 ◽  
Author(s):  
N Sone ◽  
A Naqui ◽  
C Kumar ◽  
B Chance

Reaction of O2 and CO with a caa3-type terminal cytochrome oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 grown with high aeration was studied at low temperatures. The CO recombination at the temperature range studied (−50 degrees C to −80 degrees C) followed first-order kinetics with an activation energy of 29.3 kJ/mol (7.0 kcal/mol). In the presence of O2 at −113 degrees C the photolysed reduced form binds O2 to form an ‘oxy’ intermediate similar to Compound A. At a higher temperature (-97 degrees C) another intermediate, similar to Compound B, is formed as a result of electron transfer from the enzyme to the liganded O2.


1958 ◽  
Vol 36 (9) ◽  
pp. 1227-1232 ◽  
Author(s):  
Garnett McMillan ◽  
M. H. J. Wijnen

The photolysis of di-t-butyl peroxide has been investigated over the temperature range 25 ° to 79 °C. As reaction products were observed: acetone, t-butyl alcohol, methyl t-butyl ether, i-butylene oxide, ethane, methane, and carbon monoxide. The following reactions, involving the t-butoxy radical, have been studied:[Formula: see text]An activation energy difference of E2 − E6 = 3 kcal has been obtained.


1960 ◽  
Vol 38 (8) ◽  
pp. 1261-1270 ◽  
Author(s):  
Margaret H. Back ◽  
A. H. Sehon

The thermal decomposition of phenylacetic acid was investigated by the toluene-carrier technique over the temperature range 587 to 722 °C. The products of the pyrolysis were carbon dioxide, carbon monoxide, hydrogen, methane, dibenzyl, and phenylketene. From the kinetics of the decomposition it was concluded that the reaction[Formula: see text]was a homogeneous, first-order process and that the rate constant of this dissociation step was represented by the expression k = 8 × 1012.e−55,000/RT sec−1. The activation energy of this reaction may be identified with D(C6H5CH2—COOH). The possible reactions of carboxyl radicals are discussed.


1926 ◽  
Vol 23 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Herbert Sim Hirst

It has been found that illumination of a mercury surface by ultraviolet light strong in the line λ=2536·7 Å., exerts a marked influence on the photochemical union of hydrogen andgases such as oxygen, ethylene, and carbon monoxide. The rate of reaction is proportional to the first order to the area of surface exposed.The formation of a mercuric oxide film has been shown to occur only in the presence of a mixture of hydrogen and oxygen, and alternative mechanisms for its formation are suggested.In the case of nitrogen-hydrogen mixtures, hydrazine and ammonia have been identified in the reaction products, and in the case of hydrogen and oxygen, hydrogen peroxide and water have been found, and it is suggested that the reactions proceed in steps.The catalytic efficiency of the surface depends on its cleanness and is cut down by poisons, such as the reaction products in the case of the combination of hydrogen and carbon monoxide.


1983 ◽  
Vol 48 (11) ◽  
pp. 3202-3208 ◽  
Author(s):  
Zdeněk Musil ◽  
Vladimír Pour

The kinetics of the reduction of nitrogen oxide by carbon monoxide on CuO/Al2O3 catalyst (8.36 mass % CuO) were determined at temperatures between 413 and 473 K. The reaction was found to be first order in NO and zero order in CO. The observed kinetics are consistent with a rate equation derived from a mechanism proposed on the basis of IR spectroscopic measurements.


1990 ◽  
Vol 55 (7) ◽  
pp. 1678-1685
Author(s):  
Vladimír Stuchlý ◽  
Karel Klusáček

Kinetics of CO methanation on a commercial Ni/SiO2 catalyst was evaluated at atmospheric pressure, between 528 and 550 K and for hydrogen to carbon monoxide molar ratios ranging from 3 : 1 to 200 : 1. The effect of reaction products on the reaction rate was also examined. Below 550 K, only methane was selectively formed. Above this temperature, the formation of carbon dioxide was also observed. The experimental data could be described by two modified Langmuir-Hinshelwood kinetic models, based on hydrogenation of surface CO by molecularly or by dissociatively adsorbed hydrogen in the rate-determining step. Water reversibly lowered catalyst activity and its effect was more pronounced at higher temperature.


Sign in / Sign up

Export Citation Format

Share Document