Kinetics and mechanism of oxidation of iodide ion by the molybdenum (VI) – hydrogen peroxide system

1990 ◽  
Vol 68 (9) ◽  
pp. 1499-1503 ◽  
Author(s):  
Conchita Arias ◽  
Fernando Mata ◽  
Joaquin F. Perez-Benito

The kinetics of oxidation of potassium iodide by hydrogen peroxide in aqueous perchloric acid has been studied both in the absence and in the presence of sodium molybdate by means of the initial-rates method. The law found for the total initial reaction rate is[Formula: see text]The activation energies associated with rate constants k1, k2, and k3 are 52 ± 1, 49 ± 1, and 42 ± 3 kJ mol−1, respectively. A mechanism in agreement with the experimental kinetic data is proposed, according to which rate constants k1, k2, and k3 correspond to the oxidations of iodide ion by H2O2, H3O2+ and H2MoO5, respectively. Keywords: catalysis, hydrogen peroxide, iodide ion, kinetics, molybdate ion.

1979 ◽  
Vol 44 (12) ◽  
pp. 3588-3594 ◽  
Author(s):  
Vladislav Holba ◽  
Olga Volárová

The oxidation kinetics of cis-bis(ethylenediamine)isothiocyanonitrocobalt(III) ion with peroxodisulphate was investigated in the medium of 0.01 M-HClO4 in dependence on the ionic strength and temperature and the reaction products were identified. Extrapolated values of thermodynamic activation parameters were determined from the temperature dependence of the rate constants extrapolated to zero ionic strength. The distance of the closest approach was estimated for the reacting ions by evaluating the primary salt effect. To elucidate the mechanism, the influence of the cyclic polyether 18-crown-6 on the reaction rate was followed.


1989 ◽  
Vol 67 (4) ◽  
pp. 634-638 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herraez ◽  
Emilio Calle.

The kinetics of oxidation of proline by periodate has been studied at pH 1.40–8.83 and 30.0 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. There was no evidence for the formation of an appreciable amount of intermediate. The reaction rate is highest at pH 4–7 and the oxidation is catalysed by [Formula: see text] ions. The pH dependence of the reaction rate can be explained in terms of reaction of periodate monoanion and the protonated and dipolar forms of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants obtained from the derived rate law are in agreement with the observed rate constants, thus justifying the rate law and the proposed mechanistic scheme. Keywords: oxidation of proline, oxidation by periodate.


1988 ◽  
Vol 53 (3) ◽  
pp. 554-562
Author(s):  
Ján Benko ◽  
Oľga Vollárová ◽  
Miroslav Kovarčík

The kinetics of oxidation of the coordinatively bonded sulphur in the cysteinato-bis(ethylenediamine)cobalt(III) and bis(ethylenediamine)mercaptoacetatocobalt(III) complexes by hydrogen peroxide to the sulphoxides was examined in HClO4 solutions (c(HClO4) = 1 – 500 mmol l-1) with a view to obtaining data characterizing the effect of the acid-base equilibria of the reactants on the reaction rate. The reaction rate was found affected particularly by the acid-base equilibrium of the oxidant, which plays a role in strongly acid solutions. The oxidation was also studied in water-methyl alcohol, water-tert-butyl alcohol and water-ethylene glycol mixtures, and the effect of the mole fraction of the nonaqueous component on the rate constant and thermodynamic activation parameters was examined.


1968 ◽  
Vol 46 (12) ◽  
pp. 2053-2060 ◽  
Author(s):  
C. C. Hong ◽  
W. H. Rapson

A mechanism involving HOCl, Cl—ClO2, and Cl2 as intermediates is proposed for the disproportionation of chlorous acid. In the absence of chloride, the reaction is controlled by two simultaneous processes, 2HClO2 → H+ + HOCl + ClO3− and HClO2 + ClO2− → HOCl + ClO3−. Chloride has a catalytic effect and an inhibiting effect as well on the formation of chlorine dioxide. The initial reaction rate passes through a minimum at a certain concentration of chloride at low acidities, which can be interpreted by the postulated mechanism. Under chloride catalysis, the reaction is controlled by the process H+ + Cl− + HClO2 → 2HOCl.


1985 ◽  
Vol 63 (9) ◽  
pp. 2349-2353 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herráez

The kinetics of oxidation of serine and threonine by periodate have been investigated in acid medium at 10 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. The rates decrease with increase in [H+]. A catalytic effect of the buffers was not observed in the oxidation process. An analysis of the dependence of the rate on [H+] reveals that the reactive species under the experimental conditions are periodate monoanion and dianion and the dipolar form of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants predicted using the derived rate law are in agreement with the observed rate constants, thus justifying this rate law and hence the proposed mechanistic scheme.


1985 ◽  
Vol 20 (1) ◽  
pp. 118-128 ◽  
Author(s):  
P.T. Takaoka ◽  
J.J. Ganczarczyk

Abstract Collecting of concentrated cyanide solutions in electroplating shops is quite a common occurrence. These accumulations of 4.5 to 9.0 cu m volume, which may be collected over a period of years, are usually in the concentration range of 1 to 3 per cent cyanide and present considerable dangers as they are stored on-site or transported for treatment or disposal. Common technologies available for the treatment of cyanide-containing wastewaters are generally not applicable to concentrated cyanide solutions, and some special technologies which could be applicable, usually show high capital costs and/or complexity of operation which render them unsuitable for smaller plating shop practice. In recent years, considerable work has been carried out to investigate a reaction of cyanide with polysulphide to form relatively innocuous thiocyanate. However, this reaction has been studied_only for cyanide solutions of low concentration (less than 100 mg/L CN-). This study was undertaken to investigate the feasibility of using the cyanide-polysulphide reaction to detoxify concentrated cyanide solutions (e.g. 2% CN-) and to investigate the initial kinetics of the cyanide-polysulphide reaction. It was found that the cyanide-polysulphide reaction is moderately exothermic and proceeds very rapidly both at room temperature and at 3°C. This process was capable of reducing cyanide concentrations to non-detectable levels within two weeks at a cyanide-to-polysulphide-sulphur ratio of 1:2 by weight. It was also found that the initial reaction rate kinetics of the cyanide-polysulphide reaction in concentrated solutions differed significantly from previously reported values for solutions low in cyanide concentration and that high concentrations of polysulphides tended to suppress the reaction rate.


2021 ◽  
Vol 11 (4) ◽  
pp. 1456
Author(s):  
Yusuke Hayakawa ◽  
Ryoichi Nakayama ◽  
Norikazu Namiki ◽  
Masanao Imai

In this study, we maximized the reactivity of phospholipids hydrolysis with immobilized industrial-class phospholipase A1 (PLA1) at the desired water content in the water-in-oil (W/O) microemulsion phase. The optimal hydrophobic-hydrophilic condition of the reaction media in a hydrophobic enzyme reaction is critical to realize the maximum yields of enzyme activity of phospholipase A1. It was attributed to enzymes disliking hydrophobic surroundings as a special molecular structure for reactivity. Immobilization of PLA1 was successfully achieved with the aid of a hydrophobic carrier (Accurel MP100) combination with the treatment using glutaraldehyde. The immobilized yield was over 90% based on simple adsorption. The hydrolysis reaction was kinetically investigated through the effect of glutaraldehyde treatment of carrier and water content in the W/O microemulsion phase. The initial reaction rate increased linearly with an increasing glutaraldehyde concentration and then leveled off over a 6% glutaraldehyde concentration. The initial reaction rate, which was predominantly driven by the water content in the organic phase, changed according to a typical bell-shaped curve with respect to the molar ratio of water to phospholipid. It behaved in a similar way with different glutaraldehyde concentrations. After 10 cycles of repeated use, the reactivity was well sustained at 40% of the initial reaction rate and the creation of the final product. Accumulated yield after 10 times repetition was sufficient for industrial applications. Immobilized PLA1 has demonstrated potential as a biocatalyst for the production of phospholipid biochemicals.


Author(s):  
Jesús Andrés Tavizón Pozos ◽  
Gerardo Chávez Esquivel ◽  
Ignacio Cervantes Arista ◽  
José Antonio de los Reyes Heredia ◽  
Víctor Alejandro Suárez Toriello

Abstract The influence of Al2O3–ZrO2 and TiO2–ZrO2 supports on NiMo-supported catalysts at a different sulfur concentration in a model hydrodeoxygenation (HDO)-hydrodesulfurization (HDS) co-processing reaction has been studied in this work. A competition effect between phenol and dibenzothiophene (DBT) for active sites was evidenced. The competence for the active sites between phenol and DBT was measured by comparison of the initial reaction rate and selectivity at two sulfur concentrations (200 and 500 ppm S). NiMo/TiO2–ZrO2 was almost four-fold more active in phenol HDO co-processed with DBT than NiMo/Al2O3–ZrO2 catalyst. Consequently, more labile active sites are present on NiMo/TiO2–ZrO2 than in NiMo/Al2O3–ZrO2 confirmed by the decrease in co-processing competition for the active sites between phenol and DBT. DBT molecules react at hydrogenolysis sites (edge and rim) preferentially so that phenol reacts at hydrogenation sites (edge and edge). However, the hydrogenated capacity would be lost when the sulfur content was increased. In general, both catalysts showed similar functionalities but different degrees of competition according to the highly active NiMoS phase availability. TiO2–ZrO2 as the support provided weaker metal-support interaction than Al2O3–ZrO2, generating a larger fraction of easily reducible octahedrally coordinated Mo- and Ni-oxide species, causing that NiMo/TiO2–ZrO2 generated precursors of MoS2 crystallites with a longer length and stacking but with a higher degree of Ni-promotion than NiMo/Al2O3–ZrO2 catalyst.


Author(s):  
S.M. Asadov ◽  

This article is devoted to modeling the kinetics of colloidal crystallization of cadmium selenide (CdSe) nanoparticles (NPs). The kinetic equation is modified, considering the contributions of the reaction rate constants of individual stages. It includes the reaction rate constants, thermodynamic and calculated parameters, and physical properties. There is used modified kinetic model based on the crystallization equation. There are considered the contributions of adsorption, desorption, and migration of nucleated particles at different times. Modified model assumes that, upon crystallization of NPs CdSe, monomer units depend on the frequency of attachment and detachment transitions of the monomer–CdSe complex. In this case, the transformation of the precursor into a monomer, the formation of an effective monomer and nucleation pass into the growth stage of (NC CdSe) nanocrystals with a seeded mass. In the process, the resulting nanocluster will continue to grow due to early maturation, aging, and subsequent growth into larger NC CdSe. The Kinetic Monte Carlo method (KMC) is used to approximate the model of the nucleation–growth of NC considering different contributions to the reaction rate constants. The modified model with the use of KMC allows to describe the dependences of the kinetic rate constants on the average radius of nanoparticles as a function of time, concentration, and distribution of NC CdSe at a given time. There are described conditions for the formation of NPs CdSe with an evolutionary distribution function of NC CdSe in size space. The results of modeling the kinetics of colloidal crystallization of CdSe can be used to control nucleation rate and growth of NPs CdSe, as well as similar systems in the formation of high-quality NC.


Sign in / Sign up

Export Citation Format

Share Document