The mechanism of the oxidative deamination and decarboxylation of serine and threonine by periodate in acid medium

1985 ◽  
Vol 63 (9) ◽  
pp. 2349-2353 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herráez

The kinetics of oxidation of serine and threonine by periodate have been investigated in acid medium at 10 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. The rates decrease with increase in [H+]. A catalytic effect of the buffers was not observed in the oxidation process. An analysis of the dependence of the rate on [H+] reveals that the reactive species under the experimental conditions are periodate monoanion and dianion and the dipolar form of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants predicted using the derived rate law are in agreement with the observed rate constants, thus justifying this rate law and hence the proposed mechanistic scheme.

1989 ◽  
Vol 67 (4) ◽  
pp. 634-638 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herraez ◽  
Emilio Calle.

The kinetics of oxidation of proline by periodate has been studied at pH 1.40–8.83 and 30.0 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. There was no evidence for the formation of an appreciable amount of intermediate. The reaction rate is highest at pH 4–7 and the oxidation is catalysed by [Formula: see text] ions. The pH dependence of the reaction rate can be explained in terms of reaction of periodate monoanion and the protonated and dipolar forms of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants obtained from the derived rate law are in agreement with the observed rate constants, thus justifying the rate law and the proposed mechanistic scheme. Keywords: oxidation of proline, oxidation by periodate.


2011 ◽  
Vol 8 (4) ◽  
pp. 1728-1733 ◽  
Author(s):  
N. M. I. Alhaji ◽  
S. Sofiya Lawrence Mary

The kinetics of oxidation of isoleucine withN-bromophthalimide has been studied in perchloric acid medium potentiometrically. The reaction is of first order each in [NBP] and [amino acid] and negative fractional order in [H+]. The rate is decreased by the addition of phthalimide. A decrease in the dielectric constant of the medium increases the rate. Addition of halide ions or acrylonitrile has no effect on the kinetics. Similarly, variation of ionic strength of the medium does not affect the reaction rate. The reaction rate has been determined at different temperatures and activation parameters have been calculated. A suitable mechanism involving hypobromous acid as reactive species has been proposed.


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


2004 ◽  
Vol 59 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Mahesha Shetty ◽  
B. Thimme Gowda

Abstract To study the variation of oxidative strengths of N-chloro-arenesulphonamides with substitution in the benzene ring, six mono- and five di-substituted N-chloro-arenesulphonamides are employed as oxidants for studying the kinetics of oxidation of two neutral amino acids, L-leucine and Lisoleucine in aqueous acid medium. The N-chloro-arenesulphonamides studied are of the constitution: ArSO2NaNCl·H2O (where Ar = C6H5, 4-CH3C6H4, 4-C2H5C6H4, 4-FC6H4, 4-ClC6H4, 4-BrC6H4, 2,3-(CH3)2C6H3, 2,4-(CH3)2C6H3, 2-CH3-4-ClC6H3, 2,4-Cl2C6H3, and 3,4-Cl2C6H3). The reactions show second order kinetics in [oxidant], fractional order in [amino acid] and inverse dependence on [H+]. Addition of the reduced product of the oxidants or variation in ionic strength of the medium has no significant effect on the rates of oxidations. A two-pathway mechanism is considered to explain the experimental results. Effective oxidizing species of the oxidants is Cl+ in different forms. Therefore the oxidising strengths of N-chloro-arenesulphonamides depend on the ease with which Cl+ is released from them. The study reveals that the introduction of substituent in the benzene ring of the oxidant affects both the kinetic and thermodynamic data for the oxidations The electron releasing groups such as CH3 generally inhibit the rates, while electron-withdrawing groups such as Cl enhance this ability, as the electron withdrawing groups ease the release of Cl+ from the reagents and hence increase the oxidising strengths. The on Ea and logA and validity of the Hammett and isokinetic relationships for the oxidations are also analysed.


1990 ◽  
Vol 68 (9) ◽  
pp. 1499-1503 ◽  
Author(s):  
Conchita Arias ◽  
Fernando Mata ◽  
Joaquin F. Perez-Benito

The kinetics of oxidation of potassium iodide by hydrogen peroxide in aqueous perchloric acid has been studied both in the absence and in the presence of sodium molybdate by means of the initial-rates method. The law found for the total initial reaction rate is[Formula: see text]The activation energies associated with rate constants k1, k2, and k3 are 52 ± 1, 49 ± 1, and 42 ± 3 kJ mol−1, respectively. A mechanism in agreement with the experimental kinetic data is proposed, according to which rate constants k1, k2, and k3 correspond to the oxidations of iodide ion by H2O2, H3O2+ and H2MoO5, respectively. Keywords: catalysis, hydrogen peroxide, iodide ion, kinetics, molybdate ion.


1979 ◽  
Vol 44 (12) ◽  
pp. 3588-3594 ◽  
Author(s):  
Vladislav Holba ◽  
Olga Volárová

The oxidation kinetics of cis-bis(ethylenediamine)isothiocyanonitrocobalt(III) ion with peroxodisulphate was investigated in the medium of 0.01 M-HClO4 in dependence on the ionic strength and temperature and the reaction products were identified. Extrapolated values of thermodynamic activation parameters were determined from the temperature dependence of the rate constants extrapolated to zero ionic strength. The distance of the closest approach was estimated for the reacting ions by evaluating the primary salt effect. To elucidate the mechanism, the influence of the cyclic polyether 18-crown-6 on the reaction rate was followed.


2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


1978 ◽  
Vol 33 (6) ◽  
pp. 657-659 ◽  
Author(s):  
M. P. Singh ◽  
A. K. Singh ◽  
Mandhir Kumar

Abstract The present paper deals with the kinetics of oxidation of D-galactose by Nessler's reagent in alkaline medium. The reaction is zero order with respect to Hg(II) and first order with respect to reducing sugar. The direct proportionality of the reaction rate at low hydroxide ion concentrations shows retarding trend at higher concentrations. The reaction rate is inversely proportional to iodide ion concentration. A mechanism has been proposed taking HgI3- as the reacting species


1973 ◽  
Vol 26 (9) ◽  
pp. 1863 ◽  
Author(s):  
GT Briot ◽  
RH Smith

The kinetics of oxidation of thiocyanate to sulphate by aqueous iodine in the pH range 9.2-12.5 have been studied using a spectrophotometric stopped flow technique. The reaction is general base-catalysed, having the rate law ��������������������� -d[I2]a/dt = ([SCN-][I3-]/[I-]2)Σ kB[B] where [I2]a is the total analytical concentration of iodine, [B] is the concentration of base, and where the summation is taken over all bases present. Rate constants, kB, and activation energies have been measured for the bases, OH-, PO43- and CO32-. ��� A mechanism involving the initial steps ����������������� I2+SCN- ↔ ISCN+I- �����������������(rapid equilibrium) ������������� ISCN+H2O+B → HOSCN+I- + HB+ �����������(rate determining) followed by rapid reactions of HOSCN with itself or with iodine is proposed.


Sign in / Sign up

Export Citation Format

Share Document