2-Phenyladamantane as a model for axial phenylcyclohexane. 1H NMR and molecular orbital studies of motion about the Csp2—Csp3 bond

1991 ◽  
Vol 69 (3) ◽  
pp. 503-508 ◽  
Author(s):  
Ted Schaefer ◽  
Christian Beaulieu ◽  
Rudy Sebastian

The 1H NMR spectra of the aromatic groups of 2-phenylcyclohexane and 2-phenyladamantane, in CS2/C6D12 solution at 300 K, are analyzed to yield the long-range coupling constants between the α and ring protons. The coupling over six bonds is related to the internal rotational potential about the Csp2—Csp3 bond in these molecules. It is confirmed that the equatorial isomer of phenylcyclohexane has the parallel conformer, that in which the aromatic plane lies in the symmetry plane bisecting the cyclohexane moiety, as the most stable. The apparent twofold barrier to rotation about the exocyclic carbon–carbon bond follows as 7.1 kJ/mol from the six-bond coupling constant. For 2-phenyladamantane, the six-bond coupling constant strongly implies that the perpendicular conformer, perhaps slightly skewed, is that of lowest energy and that the apparent twofold barrier to rotation about the Csp2—Csp3 bond is about 7.5 kJ/mol. Insofar as 2-phenyladamantane mimics axial phenylcyclohexane, these results confirm recent conclusions about the conformation of the latter and provide evidence for its internal mobility. Geometry-optimized AMI and STO-3G MO computations are reported for the internal motion in both isomers of phenylcyclohexane. The former agree best with experiment for the equatorial isomer, but both imply a significant fourfold, of opposite sign to the twofold, component of the internal rotational potential. For the axial isomer, the two sets of computations find a skewed perpendicular conformer as most stable, in rough agreement with force-field results. However, the barrier to rotation about the Csp2—Csp3 bond is computed as small and AMI has the parallel conformer as more stable than the perpendicular. Key words: 2-phenyladamantane, 1H NMR and internal rotation; phenylcyclohexane, 1H NMR and internal rotation; MO computations, 2-phenyladamantane and phenylcyclohexane.

1986 ◽  
Vol 64 (7) ◽  
pp. 1322-1325
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian ◽  
Glenn H. Penner

The 1H nmr spectra of benzyl chloride in dilute CS2 and acetone-d6 solutions are analyzed. The long-range coupling constants are consistent only with a low-energy conformation in which the C—Cl bond lies in a plane perpendicular to the benzene plane. Geometry optimized computations at the STO 3G level of molecular orbital theory agree with this conclusion and yield a nearly pure twofold barrier to internal rotation of 8.6 kJ/mol. In CS2 solution the long-range couplings yield 8.8 kJ/mol, rising to 11.2 kJ/mol in acetone solution. This increase in the internal barrier in a polar solvent is similar to that found for benzyl fluoride, but in the latter the barrier itself is very much smaller than in benzyl chloride.


1981 ◽  
Vol 46 (8) ◽  
pp. 1913-1929 ◽  
Author(s):  
Bohdan Schneider ◽  
Pavel Sedláček ◽  
Jan Štokr ◽  
Danica Doskočilová ◽  
Jan Lövy

It was found that three crystalline forms of ethylene glycol dibenzoate can be prepared. Infrared and Raman spectra of these three forms, as well as of the glassy and liquid states, were measured. From 3JHH coupling constants obtained by analysis of the 13C satellite band of the -CH2- group in 1H NMR spectra, and from the 3JCH coupling constants of the -CO.O.CH2- fragment obtained by analysis of the carbonyl band in 13C NMR spectra it was found that in the liquid state the -CH2-CH2- group exists predominantly in the gauche conformational structure, and the bonds C-O-C-C assume predominantly a trans orientation. The results of the analysis of NMR and vibrational spectra were used for the structural interpretation of conformationally sensitive bands in vibrational spectra of ethylene glycol dibenzoate.


1998 ◽  
Vol 63 (7) ◽  
pp. 1012-1020 ◽  
Author(s):  
Antonín Lyčka ◽  
Josef Jirman ◽  
Alois Koloničný

The 15N, 13C, and 1H NMR spectra were measured for azo and hydrazo compounds derived from 1,3,3-trimethyl-2-methylidene-2,3-dihydroindole (Fischer base), which is a passive component with a terminal methylidene group. Products prepared by coupling in hydrochloric acid exist in the corresponding hydrazone form as the E-isomers. Neutralization gives a mixture of two isomeric azo compounds which differ in the arrangement at the C(2)=C(10) double bond. This mixture was alkylated with methyl iodide to obtain the =N-N(CH3)- hydrazone derivatives. The geometric isomers were resolved based on the NOESY approach and the stereospecific behaviour of the 2J(15N,13C) coupling constants was studied for the 15N-labelled compounds.


1995 ◽  
Vol 60 (4) ◽  
pp. 619-635 ◽  
Author(s):  
Václav Křeček ◽  
Stanislav Hilgard ◽  
Miloš Buděšínský ◽  
Alois Vystrčil

A series of derivatives with various oxygen functionalities in positions 17,22a or 19,20 was prepared from diene I and olefin XVI by addition and oxidation reactions. The structure of the obtained compounds was confirmed by 1H NMR, 13C NMR and IR spectroscopy. The kind of intramolecular association of the 17α-hydroxy group was studied in connection with modification of the side chain and substitution in position 22a. Complete assignment of the hydrogen signals and most of the coupling constants was accomplished using a combination of 1D and 2D NMR techniques. The 1H and 13C NMR spectra are discussed.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 431-435 ◽  
Author(s):  
R. Ambrosetti ◽  
D. Catalano ◽  
C. Forte ◽  
C. A. Veracini

T he quadrupolar coupling constants (DQCC) and the asymmetry parameters (η) for the ortho, meta and para deuterons in pyridine-d5, benzonitrile-d5 and chlorobenzene-d5 were determined by NMR spectroscopy in oriented phases. The 1H and 2H NMR spectra were recorded in the following solutions in liquid crystal solvents: pyridine + pyridine-d5 in PCH , in ZLI 1167 and in EBBA; benzonitrile + benzonitrile-d5 and chlorobenzene + chlorobenzene-d5 in the same solvents.The order parameters of the non-deuterated solutes in the various solutions were calculated using the dipolar couplings of the proton spectra and the rα structures taken from the literature. The same order parameters were assumed to describe also the orientation of the deuterated solute in the corresponding solutions.Each 2H spectrum yielded three quadrupolar splittings for the three different deuterated positions in the labelled solute. The splittings from the three different solutions of the same solute, together with the order parameters and the rα structure, were used to determine DQCC and η of the ortho, meta and para deuterons (Pyridine-d5: DQCCortho= 183(1) kHz, ηortho = 0.030(5), DQCCmeta = 185(1) kHz, ηmeta = 0.030(10), DQCCpara = 188(6) kHz, ηpara = 0.01(5). Benzonitrile-d5: DQCCortho = 171(12) kHz, ηortho = 0.07(3), DQCCmeta = 175(12) kHz, ηmeta = 0.05(3), DQCCpara = 176(4) kHz, ηpara = 0.10(7). Chlorobenzene-d5: DQCCortho = 180(2) kHz, ηortho = 0.06(1), DQCCmeta = 174(2) kHz, ηmeta = 0.09(3), DQCCpara= 182(4) kHz, ηPara = 0.06(4)). The results are discussed, as well as the limits and possibilities of the method used.


1998 ◽  
Vol 53 (6-7) ◽  
pp. 453-458 ◽  
Author(s):  
Junko Kimura ◽  
Takeshi Fukase ◽  
Motohiro Mizuno ◽  
Masahiko Suhara

Abstract The successive phase transitions of [Mg(H2O)6][SiF6] were studied by measuring 2H NMR spectra. The quadrupole coupling constant e2Qq/h and asymmetry parameter η changed drastically at each transition temperature. 1,2H and 19F NMR Tl were measured for this compound to study the relation between the molecular motions and the successive phase transitions. The activation energy Ea and the pre-exponential factor τ0 for the reorientation of [SiF6]2- were estimated as 28 kJmol-1 and 6.0 x 10-14 s, and those of the 180° flip of H2O as 33 kJmol-1 and 4.0x 10-14 s. These two motions occur rapidly even in phase V. For the reorientation of [Mg(H2O)6]2+ , Ea = 62 kJmol-1 and τ0 = 1.1 x 10-16 s were obtained from the simulation of 2H NMR spectra. The jump rate of this motion is of the order of 104 -106 s-1 in phase II. These results suggest that the successive phase transitions are closely related to the motion of [Mg(H2O)6]2+ .


1977 ◽  
Vol 55 (4) ◽  
pp. 575-582 ◽  
Author(s):  
T. Roberie ◽  
N. S. Bhacca ◽  
J. Selbin

The high resolution 1H nmr spectra of the substituted flavine, 3-N-methyltetraacetylriboflavine (3-Me-TARF), and its non-aqueous solution complexes with Gd(fod)3, Eu(fod)3, MoCl4, and MoCl4•2CH3(CH2)2CN, were studied in order to try to discern the binding sites of the flavine as it attaches to the molybdenum. Evidence was found that all three metal atoms, Gd(III), Eu(III), and Mo(IV), are attached in solution not only by the primary binding (chelating) sites of the flavine, viz., the O-4 and N-5 atoms, but also by an acetyl oxygen atom, at the C-4′ site of the ribityl side chain. 300 MHz spectra of the 3-Me-TARF have permitted the coupling constants for the side chain methine and methylene protons to be obtained.


1982 ◽  
Vol 60 (20) ◽  
pp. 2611-2616 ◽  
Author(s):  
Ted Schaefer ◽  
Richard P. Veregin ◽  
Reino Laatikainen ◽  
Rudy Sebastian ◽  
Kirk Marat ◽  
...  

The temperature-dependent 19F nmr spectra of 2,6-difluoroisopropylbenzene yield [Formula: see text], ΔH≠, and ΔS≠ as 6.93 (5) kcal/mol, 6.1(1) kcal/mol, and −5.0(8) cal/mol K, respectively, for the internal rotation of the isopropyl group about the sp2–sp3 carbon–carbon bond. The long-range spin–spin coupling constant over six bonds, 6JpH,CH, combined with the J method gives a twofold internal potential barrier of 5.0 ± 1.6 kcal/mol at 305 K. Although in this barrier range the J method suffers from large errors, the two methods yield comparable values for the barrier height. The lineshape method is inapplicable to 2,6-difluoroefhylbenzene. The J method finds the preferred conformation and a twofold barrier of 6.0 ± 2 kcal/mol, again in a barrier region where this method is inaccurate. Relative to hydrogen, the fluorine substituents cause substantial increases in the barriers to internal rotation. Signs of the stereospecific couplings, 4JoF,CH, are determined.


1993 ◽  
Vol 48 (10) ◽  
pp. 1433-1436
Author(s):  
Bernd Wrackmeyer ◽  
Gerald Kehr

Coupling constants 2J(15N13CR) and nJ(15N1HR) in 2-substituted pyridines [R = Me (1), CH=CH2 (2), C≡CH (3), C(O)H (4), C(O)Me (5)] have been measured by using Hahn-echo extended (HEED) pulse sequences for one- (1 D) and two-dimensional (2D) 13C/1H NMR (HEED-INEPT, HEED-HETCOR). The magnitude of |2J(15N13CR)| is hardly affected by the hybridization of 13CR. 15N NMR spectra, measured under conditions of ultra high resolution (UHR) confirm the values 2J(15N13CR). 2D 13C/1H HEED-HETCOR experiments show that the sign of 3J(15Ν1HR) is negative in 1, whereas the coupling constants 3J(15N1HR) in 4 and 4J(15N1HR) in 3 have a positive sign


1979 ◽  
Vol 44 (6) ◽  
pp. 1949-1964 ◽  
Author(s):  
Miloš Buděšínský ◽  
Tomáš Trnka ◽  
Miloslav Černý

The 1H NMR spectra of 1,6-anhydro-β-D-hexopyranoses and their triacetates, measured in hexadeuteriodimethyl sulfoxide or deuteriochloroform, confirmed the existence of these compounds in 1C4(D) conformations, with the pyranose ring partly planarized in dependence on the configuration of the substituents in positions C(2), C(3) and C(4). The effects of the substituents on the chemical shifts and the adjusted relationship for the dependence of vicinal coupling constants on the torsion angle are discussed in detail from the point of view of the determination of the configuration and the conformation of 1,6-anhydro-β-D-hexopyranoses and their derivatives. The 1H NMR spectra of triacetates were also measured in the presence of the lanthanide shift reagent, tris(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione) europium (III) [Eu.(FOD)3].


Sign in / Sign up

Export Citation Format

Share Document