Comparison of metabolites produced in vitro and in vivo by Photorhabdus luminescens, a bacterial symbiont of the entomopathogenic nematode Heterorhabditis megidis

1998 ◽  
Vol 44 (11) ◽  
pp. 1072-1077 ◽  
Author(s):  
Kaiji Hu ◽  
Jianxiong Li ◽  
Wenjie Wang ◽  
Houming Wu ◽  
Hai Lin ◽  
...  

The types of metabolites produced by Photorhabdus luminescens C9 when it is introduced by Heterorhabditis megidis 90 into Galleria mellonella larvae are different from those produced in tryptic soy broth. Only 3,5-dihydroxy-4-isopropylstilbene 1 was identified from the organic extracts of P. luminescens culture broth, but both 3,5-dihydroxy-4-isopropylstilbene 1 and 3,5-dihydroxy-4-ethylstilbene 3 were isolated from the organic extracts of nematode-bacterium infected G. mellonella larvae. In addition to two pigments, both of which had been previously reported from P. luminescens C9 culture broth, three pigments, 1,8-dihydroxy-3-methoxy-9,10-anthraquinone 2, 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone 6, and 1,4-dihydroxy-2,5-dimethoxy-9,10-anthraquinone 7 were isolated from the organic extracts of G. mellonella larvae infected by the nematode-bacterium complex. Among these, compounds 6 and 7 are novel and isolated from a natural source for the first time.Key words: Photorhabdus luminescens, Heterorhabditis megidis, 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, 1,4-dihydroxy-2,5-dimethoxy-9,10-anthraquinone, pigment.

Nematology ◽  
2000 ◽  
Vol 2 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Steve Long ◽  
John Fenlon ◽  
Paul Richardson

AbstractThe susceptibilities of early and late instar vine weevil larvae and pupae to three species of entomopathogenic nematodes, indigenous to the UK, were tested in a series of bioassays. Steinernema kraussei (isolates L017 and L137), S. feltiae (the commercial product Nemasys®) and Heterorhabditis megidis (the commercial product Nemasys® H, reared both in vivo in Galleria mellonella larvae and in vitro), were tested at 6, 10 and 18°C for 2 weeks (early instars of O. sulcatus) or 3 weeks (late instars and pupae of O. sulcatus). Nematodes were applied to over 3800 larvae or pupae and there were over 400 untreated controls. Each insect was examined subsequently to determine mortality, and parasitised specimens were dissected to establish whether adult nematodes had developed. Differences in pathogenicity between H. megidis reared in vitro and in vivo were demonstrated. S. kraussei (L137) was consistently the most virulent nematode isolate at low temperatures. The results revealed a significant (P < 0.001) effect of temperature on small larvae of O. sulcatus, but also showed differential levels of mortality, not due to nematodes, for both small larvae and pupae. The use of Abbott's correction for control mortality is challenged and the validity of competing risks theory examined.In einer Reihe von Biotests wurde die Anfälligkeit von frühen und späten Larvenstadien sowie Puppen des Rüsselkäfers Otiorhynchus sulcatus gegenüber drei in UK einheimischen entomopathogenen Nematoden untersucht. Steinernema kraussei (isolate L017 und L137), S. feltiae (Handelsprodukt Nemasys®) und Heterorhabditis megidis (Handelsprodukt Nemasys® H, beide in vivo an Larven von Galleria mellonella und in vitro gezüchtet) wurden bei 6, 10 and 18°C für zwei Wochen (frühe Stadien von O. sulcatus) oder drei Wochen (späte Stadien und Puppen von O. sulcatus) geprüft. Über 3800 Larven oder Puppen wurden mit Nematoden behandelt, daneben gab es über 400 unbehandelte Kontrollen. Anschliessend wurde jedes Insekt untersucht, um die Mortalität zu bestimmen. Parasitierte Exemplare wurden aufpräpariert um festzustellen, ob sich adulte Nematoden entwickelt hatten. Zwischen in vitro und in vivo kultivierten H. megidis konnten Unterschiede in der Pathogenität festgestellt werden. S. kraussei (L137) war bei niedrigen Temperaturen durchgehend das virulenteste Isolat. Die Ergebnisse zeigten eine signifikante (P < 0.001) Wirkung der Temperatur auf kleine Larven von O. sulcatus. Sie zeigten für kleine Larven und Puppen aber auch unterschiedliche Mortlitätsgrade an, die nicht auf Nematoden zurückgingen. Die Anwendung von Abbott's Korrektur zur Prüfung der Mortalität wird kritisch hinterfragt, die Gültigkeit der Theorie der “competing risks” wird geprüft.


1998 ◽  
Vol 64 (9) ◽  
pp. 3214-3219 ◽  
Author(s):  
Kaiji Hu ◽  
John M. Webster

ABSTRACT A small-colony variant (Vsm) of the primary form (Vp) ofPhotorhabdus luminescens MD from in vitro and in vivo cultures is described. Unlike the primary form, Vp, the Vsm variant is not the preferred diet of its nematode symbiont, aHeterorhabditis sp., does not support development and reproduction of the nematode, and is less pathogenic than Vp toGalleria mellonella larvae. Vsm cells were carried by 25% of infective juveniles, but they comprised a very low percentage (∼0.4%) of the total cells carried by the juvenile. In vitro subculture and in vivo injection into the larvae with either Vp or Vsm always produced a mixture of both Vp and Vsm. In nematode-bacterium-infected G. mellonella larvae, the Vp population in the hemocoel was high (4 × 109 to 5 × 109 CFU/g of wet insect tissue) at 24 h after infection, decreased about 10-fold by 48 h, and then regained a high level at day 5 before decreasing at day 7 and then remaining relatively constant through day 15 postinfection. The Vsm population, under the same conditions as those of Vp, increased gradually to a high level (9 × 108 CFU/g of wet insect tissue) at day 5 postinfection and then declined gradually through day 15.


Nematology ◽  
1999 ◽  
Vol 1 (5) ◽  
pp. 457-469 ◽  
Author(s):  
Kaiji Hu ◽  
Jianxiong Li ◽  
John M. Webster

Abstract The secondary metabolites, 3,5-dihydroxy-4-isopropylstilbene (ST) and indole, from the culture filtrate of Photorhabdus luminescens MD, were shown to have nematicidal properties. ST caused nearly 100% mortality of J4 and adults of Aphelenchoides rhytium , Bursaphelenchus spp. and Caenorhabditis elegans at 100 mu g/ml, but had no effect on J2 of Meloidogyne incognita or infective juveniles (IJ) of Heterorhabditis megidis at 200 mu g/ml. Indole was lethal to several nematode species at 300 mu g/ml, and caused a high percentage of Bursaphelenchus spp. (J4 and adults), M. incognita (J2) and Heterorhabditis spp. (IJ) to be paralysed at 300, 100 and 400 mu g/ml, respectively. Both ST and indole inhibited egg hatch of M. incognita . ST repelled IJ of some Steinernema spp. but not IJ of Heterorhabditis spp., and indole repelled IJ of some species of both Steinernema and Heterorhabditis . ST, but not indole, was produced in nematode-infected larval Galleria mellonella after 24 h infection. Von Photorhabdus luminescens (Enterobacteriaceae), einem Symbionten entomopathogener Nematoden gebildete nematizide Metaboliten - Es wurde gezeigt, dass die Sekundarmetaboliten 3,5-Dihydroxy-4-isopropylstilben (ST) und Indol aus dem Kulturfiltrat von Photorhabdus luminescens MD nematizide Eigenschaften besassen. In einer Konzentration von 100 mu g/ml verursachte ST eine fast 100%ige Sterblichkeit bei J4 und Adulten von Aphelenchoides rhytium , Bursaphelenchus spp. und Caenorhabditis elegans , hatte aber bei 200 mu g/ml keine Wirkung auf J2 von Meloidogyne incognita oder auf Infektionsjuvenile (IJ) von Heterorhabditis megidis . Bei 300 mu g/ml war Indol fur etliche Nematodenarten todlich und fuhrte dazu, dass Bursaphelenchus spp. (J4 and Adulte) bei 300, M. incognita (J2) bei 100, und Heterorhabditis spp. (IJ) bei 400 mu g/ml zu einem grossen Teil gelahmt wurden. ST und Indol behinderten beide das Schlupfen von M. incognita . ST wirkte abstossend auf IJ einiger Steinernema -Arten aber nicht auf IJ von Heterorhabditis spp., und Indol wirkte abstossend auf IJ einiger Arten der beiden Gattungen Steinernema und Heterorhabditis . ST wurde in nematoden-befallenen Larven von Galleria mellonella 24 h nach der Infektion gebildet, Indol dagegen nicht.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Author(s):  
Jess Vergis ◽  
S V S Malik ◽  
Richa Pathak ◽  
Manesh Kumar ◽  
Nitin V Kurkure ◽  
...  

Abstract High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1–7)-Melittin (CAMA) against three multi- drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilisation. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document