On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

2006 ◽  
Vol 36 (6) ◽  
pp. 1345-1362 ◽  
Author(s):  
Alejandro A Royo ◽  
Walter P Carson

The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge that assumption by reviewing over 125 papers on 38 species worldwide that form dense and persistent understory canopies. Once established, this layer strongly diminishes tree regeneration, thus altering the rate and direction of forest succession. We term these dense strata recalcitrant understory layers. Over half of the cases reviewed were linked to increases in canopy disturbance and either altered herbivory or fire regimes. Nearly 75% of the studies declared that competition and allelopathy were the likely interference mechanisms decreasing tree regeneration, yet only 25% of the studies used manipulative field experiments to test these putative mechanisms. We present a conceptual model that links the factors predisposing the formation of recalcitrant understory layers with their interference mechanisms and subsequent impacts on succession. We propose that their presence constricts floristic diversity and argue for their explicit inclusion in forest dynamics theory and models. Finally, we offer management suggestions to limit their establishment and mitigate their impacts.

2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


2009 ◽  
Vol 39 (12) ◽  
pp. 2460-2469 ◽  
Author(s):  
Lisa M. Krueger ◽  
Chris J. Peterson ◽  
Alejandro Royo ◽  
Walter P. Carson

Interspecific differences in shade tolerance among woody species are considered a primary driving force underlying forest succession. However, variation in shade tolerance may be only one of many interspecific differences that cause species turnover. For example, tree species may differ in their sensitivity to herbivory. Nonetheless, existing conceptual models of forest dynamics rarely explicitly consider the impact of herbivores. We examined whether browsing by white-tailed deer ( Odocoileus virginianus Zimmermann) alters the relationship between light availability and plant performance. We monitored growth and survival for seedlings of six woody species over 2 years within six windthrow gaps and the nearby intact forest in the presence and absence of deer. Browsing decreased seedling growth for all species except beech ( Fagus grandifolia Ehrh.). More importantly, browsing altered growth rankings among species. Increased light availability enhanced growth for three species when excluded from deer, but browsing obscured these relationships. Browsing also reduced survival for three species; however, survival rankings did not significantly differ between herbivory treatments. Our results indicated that browsing and light availability operated simultaneously to influence plant growth within these forests. Thus, existing models of forest dynamics may make inaccurate predictions of the timing and composition of species reaching the canopy, unless they can account for how plant performance varies as a result of a variety of environmental factors, including herbivory.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 536 ◽  
Author(s):  
Kristen Pelz ◽  
Charles Rhoades ◽  
Robert Hubbard ◽  
Frederick Smith

The severity of lodgepole pine mortality from mountain pine beetle outbreaks varies with host tree diameter, density, and other structural characteristics, influencing subcanopy conditions and tree regeneration. We measured density and leader growth of shade-intolerant lodgepole pine, shade-tolerant Engelmann spruce, and very shade-tolerant subalpine fir regeneration beneath stands that experienced moderate and high overstory lodgepole pine mortality (average 40% and 85% of total basal area) a decade earlier. Lodgepole comprised >90% of the overstory basal area and mature spruce and fir were present in both mortality levels, though live basal area and disturbance history differed. Post-beetle outbreak recruitment was high in both mortality levels, but there were more lodgepole in high than moderate mortality plots (1140 stems ha−1 vs. 60 stems ha−1) and more subalpine fir in moderate than high mortality plots (4690 stems ha−1 vs. 2870 stems ha−1). Pine advance regeneration, established prior to outbreak, was more dense in high mortality than moderate mortality sites (930 stems ha−1 vs. 310 stems ha−1), but the trend was generally the opposite for the other conifers. Lodgepole recruitment increased and subalpine fir decreased with greater forest floor light availability. All species grew faster in high mortality areas than their counterparts in moderate mortality areas. However, in high mortality areas pine grew faster than the more shade tolerant species, and in moderate mortality areas spruce and fir grew faster than pine. These species-specific responses to the degree of overstory mortality will influence future stand composition and rate of forest recovery after mountain pine beetle outbreaks.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Raimundas Petrokas

We can think of forests as multiscale multispecies networks, constantly evolving toward a climax or potential natural community—the successional process-pattern of natural regeneration that exhibits sensitivity to initial conditions. This is why I look into forest succession in light of the Red Queen hypothesis and focus on the key aspects of ecological self-organisation: dynamical criticality, evolvability and intransitivity. The idea of the review is that forest climax should be associated with habitat dynamics driven by a large continuum of ecologically equivalent time scales, so that the same ecological conclusions could be drawn statistically from any scale. A synthesis of the literature is undertaken in order to (1) present the framework for assessing habitat dynamics and (2) present the types of successional trajectories based on tree regeneration mode in forest gaps. In general, there are four types of successional trajectories within the process-pattern of forest regeneration that exhibits sensitivity to initial conditions: advance reproduction specialists, advance reproduction generalists, early reproduction generalists and early reproduction specialists. A successional trajectory is an expression of a fractal connectivity among certain patterns of natural regeneration in the multiscale multispecies networks of landscape habitats. Theoretically, the organically derived measures of pattern diversity, integrity and complexity, determined by the rates of recruitment, growth and mortality of forest tree species, are the means to test the efficacy of specific interventions to avert the disturbance-related decline in forest regeneration. That is of relevance to the emerging field of biocomplexity research.


2004 ◽  
Vol 34 (9) ◽  
pp. 1938-1945 ◽  
Author(s):  
Isobel Waters ◽  
Steven W Kembel ◽  
Jean-François Gingras ◽  
Jennifer M Shay

This study compares the effects of full-tree versus cut-to-length forest harvesting methods on tree regeneration in jack pine (Pinus banksiana Lamb.), mixedwood (Picea glauca (Moench) Voss – Populus tremuloides Michx. – Abies balsamea (L.) Mill.), and black spruce (Picea mariana (Mill.) BSP) sites in southeastern Manitoba, Canada. We surveyed tree regeneration densities, disturbance characteristics, and understorey vegetation in replicated control and harvested plots in each site type preharvest (1993) and 1 and 3 years postharvest (1994, 1996). In jack pine sites, the full-tree harvest method promoted regeneration of Pinus banksiana through increased disturbance of soil and the moss layer, and decreased slash deposition relative to the cut-to-length method. Conversely, in mixedwood sites the cut-to-length method resulted in less damage to advance regeneration and proved better at promoting postharvest regeneration of Abies balsamea and Picea glauca relative to the full-tree method. In black spruce sites, there were few differences in the impact of the two harvesting methods on regeneration of Picea mariana, which increased in frequency and density after both types of harvesting.


2003 ◽  
Vol 51 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Z. Berzsenyi

The research agenda for crop science in the 21st century will depend largely on whether the present conditions regarding the global food surplus continue, or whether a food scarcity recurs. Crop production research is based chiefly on small-plot field experiments, the majority of which are either long-term experiments or experiments set up to investigate the specific agronomic responses of Martonvásár maize hybrids and wheat varieties. The sustainability of crop production is examined in long-term experiments. The agronomic responses of maize hybrids and wheat varieties are studied at various levels of biological organisation. Growth analysis facilitates the exact characterisation of agronomic responses and the grouping of response effects and types using multivariable methods. Continued experimentation coupled with crop simulation models and decision support systems are an ever more useful framework for analysing the complexity of agricultural systems.


1992 ◽  
Vol 70 (10) ◽  
pp. 1919-1930 ◽  
Author(s):  
K. Klinka ◽  
Q. Wang ◽  
G. J. Kayahara ◽  
R. E. Carter ◽  
B. A. Blackwell

Pacific silver fir and subalpine fir, both typically inhabiting high-elevation forests in northwestern North America, were considered shade-tolerant species, the former more tolerant than the latter. To determine their relative shade tolerance, established advance regeneration was sampled along a light gradient ranging from open areas to inside a forest stand, and analysis of irradiance, growth, and leaf measures was obtained. Relationships between the percentage of above-canopy light (in the photosynthetically active wavelengths) associated with each study tree and its 1991 height increment, 1991 lateral increment, caliper at the base of the 1991 leader, and specific leaf area were examined for individual sites, and sites were grouped according to soil moisture. There were strong, consistent, and similar relationships between irradiance, growth performance, and specific leaf area for both species. As irradiance decreased, growth performance decreased and specific leaf area increased. In spite of ecological differences between the study sites for each species, it was concluded that on fresh sites, Pacific silver fir and subalpine fir are very tolerant of shade. Both are equally well adapted to survive under high shade and snowpack by allocating more resources to caliper and lateral growth than to height growth and by increasing specific leaf area. Key words: shade tolerance, advance regeneration, irradiance, growth performance, specific leaf area, Pacific silver fir, subalpine fir.


2009 ◽  
Vol 39 (6) ◽  
pp. 1236-1246 ◽  
Author(s):  
H.M. Poulos ◽  
R.G. Gatewood ◽  
A.E. Camp

While piñon woodlands cover much of arid North America, surprisingly little is known about the role of fire in maintaining piñon forest structure and species composition. The lack of region-specific fire regime data for piñon–juniper woodlands presents a roadblock to managers striving to implement process-based management. This study characterized piñon–juniper fire regimes and forest stand dynamics in Big Bend National Park (BIBE) and the Davis Mountains Preserve of the Nature Conservancy (DMTNC) in west Texas. Mean fire return intervals were 36.5 and 11.2 years for BIBE and DMTNC, respectively. Point fire return intervals were 150 years at BIBE and 75 years at DMTNC. Tree regeneration in west Texas piñon–juniper woodlands occurred historically during favorable climatic conditions following fire years. The presence of multiple fire scars on our fire-scar samples and the multicohort stands of piñon suggested that low intensity fires were common. This study represents one of the few fire-scar-based fire regime studies for piñon–juniper woodlands. Our results differ from other studies in less topographically dissected landscapes that have identified stand-replacing fire as the dominant fire regime for piñon–juniper woodlands. This suggests that mixed-severity fire regimes are typical across southwestern piñon forests, and that topography is an important influence on fire frequency and intensity.


2004 ◽  
Vol 44 (3) ◽  
pp. 353 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of semi and fully enclosed sports stadiums necessitates the ongoing selection, development and assessment of shade-tolerance in turfgrass species. Vertical shoot growth rate is a simple biological measure that may supplement visual turfgrass assessment and provide a useful measure of shade adaptation. Cool-season temperate turfgrasses; Kentucky bluegrass–perennial ryegrass (Poa pratensis L.–Lolium perenne L.), creeping bentgrass (Agrostis palustris Huds.), supina bluegrass (Poa supina Schrad.) and tall fescue (Festuca arundinacea Schreb.), and a warm season species, Bermudagrass (Cynodon dactylon L.), were established in pot and field experiments and subjected to 4 shade treatments (0, 26, 56 or 65% shade) under ambient conditions. Average light readings taken near the winter and summer solstice in full sunlight at midday, were 790 and 1980�μmol/m2.s, respectively. Field and pot trials confirmed supina bluegrass and tall fescue to have the greatest shade tolerance, producing high turf quality under 56 and 65% shade. However, all turfgrass species declined in quality under high shade levels as indicated by an increase in thin, succulent vertical growth, and a less-dense turf sward. Vertical shoot growth rates of all species increased linearly with increasing shade levels. Kentucky bluegrass–perennial ryegrass had the highest rate of increase in vertical shoot elongation under shade, approximately 3.5 times greater than supina bluegrass, which had the lowest. Low rates of increase in vertical shoot elongation under shade indicated shade tolerance whereas high rates inferred shade intolerance.


Sign in / Sign up

Export Citation Format

Share Document