Spatial variability of stand-scale residuals in Ontario’s boreal forest fires

2009 ◽  
Vol 39 (5) ◽  
pp. 945-961 ◽  
Author(s):  
Ajith H. Perera ◽  
Benjamin D. Dalziel ◽  
Lisa J. Buse ◽  
Robert G. Routledge

Knowledge of postfire residuals in boreal forest landscapes is increasingly important for ecological applications and forest management. While many studies provide useful insight, knowledge of stand-scale postfire residual occurrence and variability remains fragmented and untested as formal hypotheses. We examined the spatial variability of stand-scale postfire residuals in boreal forests and tested hypotheses of their spatial associations. Based on the literature, we hypothesized that preburn forest cover characteristics, site conditions, proximity to water and fire edge, and local fire intensity influence the spatial variability of postfire residuals. To test these hypotheses, we studied live-tree and snag residuals in 11 boreal Ontario forest fires, using 660 sample points based on high resolution photography (1:408) captured immediately after the fires. The abundance of residuals varied considerably within and among these fires, precluding attempts to generalize estimates. Based on a linear mixed-effects model, our data did not support the hypotheses that preburn forest cover characteristics, site conditions, and proximity to water significantly affect the spatial variability of stand-scale residuals. The results do indicate, however, that stand-scale residual variability is associated with local fire intensity (strongly) and distance to fire edge (weakly).

2020 ◽  
Vol 12 (23) ◽  
pp. 3957
Author(s):  
Victor Danneyrolles ◽  
Osvaldo Valeria ◽  
Ibrahim Djerboua ◽  
Sylvie Gauthier ◽  
Yves Bergeron

Forest fires are a key driver of boreal landscape dynamics and are expected to increase with climate change in the coming decades. A profound understanding of the effects of fire upon boreal forest dynamics is thus critically needed for our ability to manage these ecosystems and conserve their services. In the present study, we investigate the long-term post-fire forest dynamics in the southern boreal forests of western Quebec using historical aerial photographs from the 1930s, alongside with modern aerial photographs from the 1990s. We quantify the changes in forest cover classes (i.e., conifers, mixed and broadleaved) for 16 study sites that were burned between 1940 and 1970. We then analyzed how interactions between pre-fire forest composition, site characteristics and a fire severity weather index (FSWI) affected the probability of changes in forest cover. In the 1930s, half of the cover of sampled sites were coniferous while the other half were broadleaved or mixed. Between the 1930s and the 1990s, 41% of the areas maintained their initial cover while 59% changed. The lowest probability of changes was found with initial coniferous cover and well drained till deposits. Moreover, an important proportion of 1930s broadleaved/mixed cover transitioned to conifers in the 1990s, which was mainly associated with high FSWI and well-drained deposits. Overall, our results highlight a relatively high resistance and resilience of southern boreal coniferous forests to fire, which suggest that future increase in fire frequency may not necessarily result in a drastic loss of conifers.


2012 ◽  
Vol 9 (9) ◽  
pp. 12087-12136 ◽  
Author(s):  
B. M. Rogers ◽  
J. T. Randerson ◽  
G. B. Bonan

Abstract. Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated the changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would result in surface cooling of 0.23 ± 0.09 °C and 0.43 ± 0.12 °C for winter–spring and February–April time periods, respectively. This could provide a negative feedback to high-latitude terrestrial warming during winter on the order of 4–6% for a doubling, and 14–23% for a quadrupling, of burn area. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.


2013 ◽  
Vol 10 (2) ◽  
pp. 699-718 ◽  
Author(s):  
B. M. Rogers ◽  
J. T. Randerson ◽  
G. B. Bonan

Abstract. Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May). This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.


1992 ◽  
Vol 49 (3) ◽  
pp. 584-596 ◽  
Author(s):  
S. E. Bayley ◽  
D. W. Schindler ◽  
K. G. Beaty ◽  
B. R. Parker ◽  
M. P. Stainton

Wildfire in the boreal forests at the Experimental Lakes Area in Ontario caused significant losses of nitrogen and phosphorus in streams. Both watershed type and fire intensity appear to determine the extent of losses. The Northeast wetland basin lost more N and P, especially TDN, TDP, TN, and TP, than did terrestrial basins, although nitrate losses were higher from terrestrial basins. Losses of nutrients after the second fire generally were not as high as after the first fire. In the East basin, which burned twice with a high fire intensity, stream concentrations of NO3−, TDN, and TN were elevated for 6 yr between the fires and remained elevated for 9 yr after the second fire In contrast, the Northwest basin burned with a lower intensity and had no significant increase in annual concentrations of P or most forms of N in the first 3 yr after the fire; only NCV concentrations increased during this period. Despite the increases in export after wildfire, net retention of TN and TP over the 18-yr period was high. In the Northeast, East, and Northwest basins, retention of TN averaged 77, 80, and 87% compared with TP retention of 51, 67, and 84%.


1995 ◽  
Vol 5 (2) ◽  
pp. 55 ◽  
Author(s):  
NHF French ◽  
ES Kasischke ◽  
LL Bourgeau-Chavez ◽  
D Berry

The results of a study using satellite imagery to map boreal forest fires in Alaska in 1990 and 1991 are presented. Composite AVHRR data detected more than 80% of fires greater than 2000 ha in size. Additionally, using a two season method, 78% of the area of all boreal forest fires in Alaska was mapped. This technique is considered to be an accurate way to detect forest fire scars and estimate area burned throughout the boreal forests, and could be very important in those regions where wildfire data are presently difficult or impossible to gather.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 393
Author(s):  
Houcai Sheng ◽  
Tijiu Cai

Larix gmelinii forest is one of the dominant forest types in boreal forest and plays a unique eco-hydrological role in the terrestrial ecosystem. However, the throughfall variability in boreal forest ecosystems, which plays a crucial role in regulating hydrology, remains unclear. Here, we investigated the spatial variability and temporal stability of throughfall within a Larix gmelinii forest in the full leaf stage in Great Kingan Mountain, Northeast China, and the effects of rainfall properties and canopy structure on throughfall variability were systematically evaluated. The results indicate that throughfall represented 81.26% of the gross rainfall in the forest. The throughfall CV (coefficient of variation of throughfall) had a significant and negative correlation with the rainfall amount, rainfall intensity, rainfall duration, and distance from the nearest trunk, whereas it increased with increasing canopy thickness and LAI (leaf area index). The correlation analysis suggested that the throughfall variability was mainly affected by the rainfall amount (R2 = 0.7714) and canopy thickness (R2 = 0.7087). The temporal stability analysis indicated that the spatial distribution of the throughfall was temporally stable. Our findings will facilitate a better understanding of the spatiotemporal heterogeneity of throughfall and help the accurate assessment of throughfall and soil water within boreal forests.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Libonati ◽  
J. M. C. Pereira ◽  
C. C. Da Camara ◽  
L. F. Peres ◽  
D. Oom ◽  
...  

AbstractBiomass burning in the Brazilian Amazon is modulated by climate factors, such as droughts, and by human factors, such as deforestation, and land management activities. The increase in forest fires during drought years has led to the hypothesis that fire activity decoupled from deforestation during the twenty-first century. However, assessment of the hypothesis relied on an incorrect active fire dataset, which led to an underestimation of the decreasing trend in fire activity and to an inflated rank for year 2015 in terms of active fire counts. The recent correction of that database warrants a reassessment of the relationships between deforestation and fire. Contrasting with earlier findings, we show that the exacerbating effect of drought on fire season severity did not increase from 2003 to 2015 and that the record-breaking dry conditions of 2015 had the least impact on fire season of all twenty-first century severe droughts. Overall, our results for the same period used in the study that originated the fire-deforestation decoupling hypothesis (2003–2015) show that decoupling was clearly weaker than initially proposed. Extension of the study period up to 2019, and novel analysis of trends in fire types and fire intensity strengthened this conclusion. Therefore, the role of deforestation as a driver of fire activity in the region should not be underestimated and must be taken into account when implementing measures to protect the Amazon forest.


2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


The Condor ◽  
2003 ◽  
Vol 105 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Craig S. Machtans ◽  
Paul B. Latour

Abstract Songbird communities in the boreal forest of the Liard Valley, Northwest Territories, Canada, are described after three years of study. Point count stations (n = 195) were placed in six types of forest (mature deciduous, coniferous, and mixedwood; young forests; wooded bogs; clearcuts) in a 700-km2 area. Vegetation characteristics at each station were also measured. Eighty-five species of birds (59 passerine species) occurred in 11 647 detections. Mixedwood forests had the highest richness of songbirds (∼41 species per 800 individuals) of the six forest types, and contained approximately 30% more individuals than nearly pure coniferous or deciduous forests. Species richness and relative abundance was 10–50% lower than in comparable forests farther south and east, and the difference was most pronounced in deciduous forests. Communities were dominated by a few species, especially Tennessee Warbler (Vermivora peregrina), Magnolia Warbler (Dendroica magnolia), Swainson's Thrush (Catharus ustulatus), Yellow-rumped Warbler (Dendroica coronata) and Chipping Sparrow (Spizella passerina). White-throated Sparrow (Zonotrichia albicollis), a dominant species in boreal forests farther south, was notably scarce in all forests except clearcuts. Clearcuts and wooded bogs had the simplest communities, but had unique species assemblages. Canonical correspondence analysis showed that the bird community was well correlated with vegetation structure. The primary gradient in upland forests was from deciduous to coniferous forests (also young to old, respectively). The secondary gradient was from structurally simple to complex forests. These results allow comparisons with other boreal areas to understand regional patterns and help describe the bird community for conservation purposes. Comunidades de Aves Canoras de Bosques Boreales del Valle de Liard, Territorios del Noroeste, Canadá Resumen. Luego de tres años de estudio, se describen las comunidades de aves canoras de bosques boreales del Valle de Liard, Territorios del Noroeste, Canadá. Se ubicaron estaciones de conteo de punto (n = 195) en seis tipos de bosque (maduro caducifolio, conífero y de maderas mixtas; bosques jóvenes; pantanos arbolados; zonas taladas) en un área de 700 km2. Las características de la vegetación en cada estación también fueron medidas. Se registraron 85 especies de aves (59 especies de paserinas) en 11 647 detecciones. Los bosques mixtos presentaron la mayor riqueza de aves canoras (∼41 especies por 800 individuos) de los seis tipos de bosque, y contuvieron aproximadamente 30% individuos más que los bosques de coníferas y los caducifolios. La riqueza de especies y la abundancia relativa fue 10–50% menor que en bosques comparables más al sur y al este, y la diferencia fue más pronunciada en los bosques caducifolios. Las comunidades estuvieron dominadas por unas pocas especies, especialmente Vermivora peregrina, Dendroica magnolia, Catharus ustulatus, Dendroica coronata y Spizella passerina. Zonotrichia albicollis, una especie dominante en bosques boreales más al sur, fue notablemente escasa en todos los bosques, excepto en las zonas taladas. Las áreas taladas y los pantanos arbolados tuvieron las comunidades más simples, pero presentaron ensamblajes únicos. Análisis de correspondencia canónica mostraron que la comunidad de aves estuvo bien correlacionada con la estructura de la vegetación. El gradiente primario en bosques de zonas altas fue de bosque caducifolio a conífero (también de joven a viejo, respectivamente). El gradiente secundario fue de bosques estructuralmente simples a bosques complejos. Estos resultados permiten hacer comparaciones con otros bosques boreales para entender los patrones regionales y ayudar a describir las comunidades de aves con fines de conservación.


Sign in / Sign up

Export Citation Format

Share Document