Soil and Douglas-fir (Pseudotsuga menziesii) foliar nitrogen responses to variable logging-debris retention and competing vegetation control in the Pacific Northwest

2010 ◽  
Vol 40 (2) ◽  
pp. 254-264 ◽  
Author(s):  
Robert A. Slesak ◽  
Timothy B. Harrington ◽  
Stephen H. Schoenholtz

Experimental treatments of logging-debris retention (0%, 40%, or 80% surface coverage) and competing vegetation control (initial or annual applications) were installed at two sites in the Pacific Northwest following clearcutting Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands to assess short-term effects on tree N acquisition, soil N supply, and total soil N. Vegetation control treatments began in the first year after harvest, and logging-debris manipulations were installed 2 years after harvest. Annual vegetation control increased foliar N concentration and content in most years at both sites, which was associated with higher available soil N and increased soil water content. Logging-debris retention treatments had no detectable effect on any of the foliar variables or soil available N at either site. There were no treatment effects on total soil N at the site with relatively high soil N, but total soil N increased with logging-debris retention when annual vegetation control was applied at the site with a low initial soil N pool. Competing vegetation control is an effective means to increase tree N acquisition in the initial years after planting while maintaining soil N pools critical to soil quality. The effect of logging-debris retention on tree N acquisition appears to be limited during early years of stand development, but increased soil N with heavy debris retention at certain sites may be beneficial to tree growth in later years.

Geoderma ◽  
2019 ◽  
Vol 350 ◽  
pp. 73-83 ◽  
Author(s):  
Daniel G. DeBruler ◽  
Stephen H. Schoenholtz ◽  
Robert A. Slesak ◽  
Brian D. Strahm ◽  
Timothy B. Harrington

2020 ◽  
Author(s):  
Gillian E. Bergmann ◽  
Posy E. Busby

ABSTRACTFungal symbionts occur in all plant tissues, and many aid their host plants with critical functions, including nutrient acquisition, defense against pathogens, and tolerance of abiotic stress. “Core” taxa in the plant mycobiome, defined as fungi present across individuals, populations, or time, may be particularly crucial to plant survival during the challenging seedling stage. However, studies on core seed fungi are limited to individual sampling sites, raising the question of whether core taxa exist across large geographic scales. We addressed this question using both culture-based and culture-free techniques to identify the fungi found in individual seeds collected from nine provenances across the range of Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), a foundation tree species in the Pacific Northwest and a globally important timber crop that is propagated commercially by seed. Two key findings emerged: 1) Seed mycobiome composition differed among seed provenances. 2) Despite spatial variation in the seed mycobiome, we detected four core members, none of which is a known pathogen of Douglas-fir: Trichoderma spp., Hormonema macrosporum, Mucor plumbeus and Talaromyces rugulosus. Our results support the concept of a core seed microbiome, yet additional work is needed to determine the functional consequences of core taxa for seedling germination, growth, survival and competition.


1971 ◽  
Vol 49 (7) ◽  
pp. 1079-1084 ◽  
Author(s):  
B. Zak

A common tuberculate ectomycorrhiza of Douglas fir in the Pacific Northwest, described earlier by Trappe, is further examined and defined. Tubercles consist of an outer rind of aseptate, amber, thick-walled hyphae encasing tightly packed inner elements mantled with septate, hyaline, thin-walled hyphae. Reported as a Phycomycete and a Basidiomycete, respectively, the two hyphal forms actually belong to a single fungus, Rhizopogon vinicolor A. H. Smith; cultural characteristics of this fungus are described. Pure culture mycorrhiza syntheses with both mycorrhizal and sporocarpic isolates and Douglas-fir seedlings are reported. Antagonism tests revealed the following inhibition of root pathogens by R. vinicolor: strong—Phytophthora cinnamomi Rands, Pythium debaryanum Heese, and Pythium sylvaticum Campbell & Hendrix; moderate—Fomes annosus (Fr.) Cke. and Poria weirii Murr.; and weak or none— Fusarium oxysporum f. pini (Hartig) Snyd. & Hans., Pythium ultimum Trow, Rhizoctonia solani Kuehn, and Macrophomina phaseoli (Maubl.) Ashby.


Author(s):  
Cory Glenn Garms ◽  
Bogdan Strimbu

The value of Douglas-fir (Pseudotsuga menziesii), which is the predominant commercial species in the Pacific Northwest, depends on tree verticality; trees with same dimensions can differ substantially in value due to lean. The objective of this study was to assess the impact of tree leaning on estimation of stem dimensions using high density terrestrial mobile lidar point clouds. We estimated lean with two metrics: the horizontal distance between stem centers at 1.3m and 18m, and the mean of seven successive lean angles along the tree bole (at 1, 3, 5, 7, 10, 12, and 15m). For modeling, we used four existing taper equations and three existing volume equations. For trees leaning >2º, we enhanced the existing volume models by including lean as a predictor. Because lean estimates depend on the distribution and number of points describing the stem, we found that including the distance from scanner to tree improved the computed volume. When DBH was replaced with diameter at heights between 7 - 10m, the volume models for leaning trees improved significantly, whereas the vertical trees had favorable results with heights between 5-15m. Our study suggests the inclusion of lean magnitude improves estimates of stem volume when lean is >2°.


1987 ◽  
Vol 108 (3) ◽  
pp. 609-615 ◽  
Author(s):  
I. Papastylianou ◽  
Th. Samios

SummaryUsing data from rotation studies in which barley or woollypod vetch were included, both cut for hay and preceding barley for grain, it is shown that forage barley gave higher dry-matter yield than woollypod vetch (3·74 v. 2·92 t/ha per year). However, the latter gave feedingstuff of higher nitrogen concentration and yield (86 kg N/ha per year for vetch v. 55 kg N/ha per year for barley). Rainfall was an important factor in controlling the yield of the two forages and the comparison between them in different years and sites. Barley following woollypod vetch gave higher grain yield than when following forage barley (2·36 v. 1·91 t/ha). Rotation sequences which included woollypod vetch had higher output of nitrogen (N) than input of fertilizer N with a positive value of 44–60 kg N/ha per year. In rotations where forage barley was followed by barley for grain the N balance between output and input was 5–6 kg N/ha. Total soil N was similar in the different rotations at the end of a 7-year period.


2015 ◽  
Vol 398 (1-2) ◽  
pp. 281-289 ◽  
Author(s):  
Robert A. Slesak ◽  
Timothy B. Harrington ◽  
Anthony W. D’Amato

Sign in / Sign up

Export Citation Format

Share Document