Genetic improvement for pulpwood and peeled veneer in Eucalyptus nitens

2012 ◽  
Vol 42 (9) ◽  
pp. 1724-1732 ◽  
Author(s):  
David Blackburn ◽  
Ross Farrell ◽  
Matthew Hamilton ◽  
Peter Volker ◽  
Chris Harwood ◽  
...  

Genetic improvement of wood properties affecting the quality of pulpwood and peeled veneer products is of general interest to tree breeders worldwide. If the wood properties of Eucalyptus nitens (H. Deane & Maiden) Maiden are under genetic control and the correlations between them are favourable, it may be possible to breed to simultaneously improve the plantation resource for both products. Acoustic wave velocity (AWV) measured in standing trees can predict wood stiffness, basic density, and kraft pulp yield (KPY) and therefore has the potential for use in tree breeding programs. From an E. nitens progeny trial in Tasmania, 540 trees were selected for rotary peeling. Of the wood properties assessed, there were significant differences among races in diameter, stem straightness, standing-tree, log, and billet AWV, and near infrared predicted cellulose content (CC). All traits displayed significant within-race genetic variation, and genetic correlations between AWV and veneer sheet modulus of elasticity (MOE) and between AWV and KPY and CC were strongly positive and highly significant. A similar relationship was found between veneer sheet MOE and KPY and between diameter at breast height and veneer sheet MOE. Basic density was genetically correlated with AWV and veneer sheet MOE. Results indicate that it should be possible for breeders to simultaneously improve properties in pulpwood and peeled veneer products and that AWV measured in the standing tree shows promise as a breeding selection criterion for both pulpwood and peeled veneer products.

2005 ◽  
Vol 54 (1-6) ◽  
pp. 160-166 ◽  
Author(s):  
L. A. Apiolaza ◽  
C. A. Raymond ◽  
B. J. Yeo

Abstract This study considered the degree of genetic variation for diameter (DBH), basic density (BD), predicted pulp yield (PPY), fibre length (FL), microfibril angle (MFA) and cellulose content (CC) amongst eight subraces of Eucalyptus globulus growing in a field trial in NW Tasmania. There were significant subrace effects for BD, FL and CC. This variation affected the relative profitability of the subraces for pulp production. On average, the most profitable subraces (on NPV/ha over the base population mean) were Strzelecki Ranges ($862.04), Western Otways ($657.80) and Strzelecki Foothills ($576.81). The genetic control (heritability) of variation in DBH, FL and MFA was moderate (0.15 < h2< 0.27), while control for BD, PPY and CC was high (h2> 0.40). Genetic correlations between growth and wood properties were not statistically significant, except for DBHMFA (-0.86). Most genetic correlations amongst wood properties were outside the parametric space (< -1 or >1), but there were significant correlations between BDMFA (-0.70) and PPY-CC (0.82). The empirical response to selection on an index based on a pulp wood objective (which included volume and basic density) resulted in a gain of 4.3% for DBH, 7.9% for BD and marginal changes for all other traits, with a net impact in profit of $1,270/ha. However, future profit calculations will need to consider the effect of FL, MFA and CC on the economics of wood processing to fully evaluate the economic impact of breeding.


2002 ◽  
Vol 32 (1) ◽  
pp. 170-176 ◽  
Author(s):  
C A Raymond ◽  
L R Schimleck

Determining kraft pulp yield in the traditional way is slow and expensive, limiting the numbers of samples that may be processed. An alternative is to use a secondary standard, such as cellulose content of the wood, which is strongly correlated with kraft pulp yield. The feasibility and efficiency of predicting cellulose content using near infrared reflectance (NIR) analysis was examined for Eucalyptus globulus Labill. Calibrations for NIR prediction of cellulose content indicated that NIR analysis could be used as a reliable predictor. Standard errors of calibration were 1% or lower, and there was excellent agreement between laboratory and predicted cellulose values. Cellulose content was under moderate genetic control (h2 ranging from 0.32 to 0.57), and genetic correlations with tree diameter and basic density were variable (ranging from –0.11 to –0.51 and –0.33 to 0.67, respectively). The advantages, disadvantages, and potential applications of NIR analysis for predicting cellulose content are examined.


1985 ◽  
Vol 15 (2) ◽  
pp. 393-396 ◽  
Author(s):  
James R. Olson ◽  
Charles J. Jourdain ◽  
Randall J. Rousseau

Seventy-five eastern Cottonwood (Populusdeltoides Bartr.) clones, selected from tests representing the top one-third of clones tested throughout the Lower Mississippi River Valley, were analyzed for alpha cellulose content, specific gravity, and volume after three growing seasons. All traits were found to differ significantly among clones. Mean clonal alpha cellulose content ranged from 48.2 to 55.8% of oven-dry, extractive-free wood with an average of 51.1%. Specific gravity averaged 0.33, with clones ranging from 0.27 to 0.39. Specific gravity was highly inherited, while alpha cellulose content was found to be moderately heritable. Negative genetic correlations between volume and both wood properties indicate that using a selection index to simultaneously improve all three traits is currently not possible. Two other selection methods were discussed. These selections showed substantial gain differentials in volume, but either a small loss or improvement in specific gravity and alpha cellulose content. This indicates that at age 3 years only volume should be considered in a selection program.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1304
Author(s):  
Vilius Gendvilas ◽  
Geoffrey M. Downes ◽  
Mark Neyland ◽  
Mark Hunt ◽  
Peter A. Harrison ◽  
...  

Thinning of forestry plantations is a common silviculture practice to increase growth rates and to produce larger dimension logs. The wood properties, basic density and stiffness, are key indicators of the suitability of timber for particular purposes and ultimately determine timber value. The impact of thinning operations on wood properties is, therefore, of considerable interest to forest growers and timber producers. To date, studies examining the impact of thinning on wood properties have produced variable results and understanding of the consistency of the effects of thinning treatments across various sites for important plantation species is limited. Two non-destructive assessment techniques, drilling resistance and acoustic wave velocity, were used to examine the impact of thinning on basic density and stiffness in 19–21-year-old plantation grown Eucalyptus nitens across three sites. Commercial thinning to 300 trees ha−1 decreased the stiffness of standing trees and this effect was consistent across the sites. Reduction in stiffness due to thinning ranged from 3.5% to 11.5%. There was no difference in wood properties between commercially and non-commercially thinned trees to 300 trees ha−1 and no difference in wood properties when thinned to 500 trees ha−1. Basic density was not affected by thinning. The site had significant effects on both basic density and stiffness, which were lowest at the highest precipitation and highest elevation site. The results indicate that wood properties are influenced both by silviculture and site environmental differences. This knowledge can be used for the better management of E. nitens resources for solid wood production.


2006 ◽  
Vol 55 (1-6) ◽  
pp. 77-84 ◽  
Author(s):  
S. Kumar ◽  
H. S. Dungey ◽  
A. C. Matheson

Abstract The two main objectives of this study were: (1) to determine how early is it possible to undertake selection to improve the stiffness of corewood; (2) to determine if the selection based on corewood stiffness could also improve outerwood stiffness, and vice versa. Breastheight data from two progeny trials of Pinus radiata D. Don were used. In the first trial (age 30 years), data on Silviscan predicted stiffness (MoE) was obtained for each growth ring on each core sample from 50 open-pollinated families. In the second trial (age 14 years), data on static-bending MoE was obtained using clearwood sticks (300 × 20 × 20 mm) cut from each tree from 18 control-pollinated families. MoE varied from 3.5 GPa in rings 1-5 to about 17 GPa in rings 21-25. Coefficients of variation of corewood and outerwood MoE were about 20-30% and 15-20% respectively. Estimates of narrowsense heritability for MoE were generally higher (0.50-0.70) in the corewood compared with the outerwood (0.15-0.30). Early selection for MoE could yield substantial gain in corewood MoE but only small gains, if any, in outerwood MoE (especially for rings 21-30). Estimated genetic correlations between density and stiffness appeared moderate in the corewood zone, but high in the outerwood zone. Selection based on density (using 5-mm cores) and acoustic stiffness (using standing tree tools), assessed at age 6-7 years, appeared to be a good option to improve both corewood and outerwood stiffness.


2006 ◽  
Vol 55 (1-6) ◽  
pp. 217-228 ◽  
Author(s):  
Sotelo Montes ◽  
R. E. Hernández ◽  
J. Beaulieu ◽  
J. C. Weber

Abstract Calycophyllum spruceanum (Benth.) Hook. f. ex K. Shum. is an important timber-tree species in the Peruvian Amazon Basin. As farmers and industry often use wood from young trees, it is important to investigate variation in juvenile wood properties in this species. A provenance/progeny test was established to evaluate genetic variation in growth and wood properties of young trees, the strength of their genetic control as well as their interrelationships both at the genetic and the phenotypic level in different planting zones. In this paper, results are presented for tree height and stem diameter (near ground level) at 16, 28 and 39 months; and stem diameter and basic density of the wood at breast height at 39 months. Significant variation due to provenances and especially due to families within provenances was found in growth and wood density. Phenotypic and genetic correlations indicated that larger trees tended to have denser wood. Wood density had higher heritability than height and diameter; and genetic control over height, diameter and density was generally highest in the planting zone where trees grew most rapidly.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel F. Rocha-Sepúlveda ◽  
Dean Williams ◽  
Mario Vega ◽  
Peter A. Harrison ◽  
René E. Vaillancourt ◽  
...  

Abstract Microfibril angle (MFA) is a key biological trait contributing to wood stiffness, which is a common breeding objective for solid wood products in many tree species. To explore its genetic architecture, area-weighted MFA was measured in two Eucalyptus nitens progeny trials in Tasmania, Australia, with common open-pollinated families. Radial strips were extracted from 823 trees in 131 families and MFA assessed using SilviScan-2®. Heritability, genotype-by-environment interaction and inter-trait genetic correlations were evaluated to examine the genetic variability and stability of MFA and its relationships with other solid wood and pulpwood selection traits. Significant family variation was found for MFA in both trials. There was no significant genotype-by-environment interaction and the across-site narrow-sense heritability was 0.27. MFA was genetically independent of basic density, growth, and tree form. However, MFA was strongly and favourable genetically correlated to acoustic wave velocity in standing trees, modulus of elasticity and kraft pulp yield (KPY). The present study has shown that genetic improvement of E. nitens for pulpwood selection traits is unlikely to have adversely affected MFA, and thus timber stiffness. Rather these results suggest the possibility that selection for increased KPY may have indirectly improved MFA favourably for solid wood products.


2010 ◽  
Vol 40 (5) ◽  
pp. 917-927 ◽  
Author(s):  
Desmond J. Stackpole ◽  
René E. Vaillancourt ◽  
Geoffrey M. Downes ◽  
Christopher E. Harwood ◽  
Brad M. Potts

Pulp yield is an important breeding objective for Eucalyptus globulus Labill., but evaluation of its genetic control and genetic correlations with other traits has been limited by its high assessment cost. We used near infrared spectroscopy to study genetic variation in pulp yield and other traits in a 16-year-old E. globulus trial. Pulp yield was predicted for 2165 trees from 467 open-pollinated families from 17 geographic subraces. Significant differences between subraces and between families within subraces were detected for all traits. The high pulp yield of southern Tasmanian subraces suggested that their economic worth was previously underestimated. The narrow-sense heritability of pulp yield was medium (0.40). The significant positive genetic correlation between pulp yield and diameter (0.52) was at odds with the generally neutral values reported. The average of the reported genetic correlations between pulp yield and basic density (0.50) was also at odds with our nonsignificant estimate. Pulp yield of the subraces increased with increasing latitude, producing a negative correlation with density (–0.58). The absence of genetic correlations within subraces between pulp yield and density suggests that the correlation may be an independent response of the two traits to the same or different selection gradients that vary with latitude.


1975 ◽  
Vol 5 (3) ◽  
pp. 424-432 ◽  
Author(s):  
J. E. Nicholson ◽  
W. E. Hillis ◽  
N. Ditchburne

The relationship between level of longitudinal growth strain and stress, modulus of elasticity, basic density, volumetric shrinkage, fiber classification, and stem form was investigated with 10 Eucalyptusregnans regrowth trees. Close relationships were observed. It is suggested that variations in these properties within trees are closely controlled, possibly to enable optimum positioning of the tree crown in relation to its immediate environment. The concept of fiber structure varying as a response to environment is supported by the observed variation in wood properties within and between trees of this species. The often-reported association between eccentric radial growth and reaction wood was not substantiated in this study.The data indicate that if economically justifiable, it would be possible to segregate trees that are likely to contain material that is hard to season.


Sign in / Sign up

Export Citation Format

Share Document