Occurrence of Vesicular Mycorrhizal Fungi in Dryland Species of Restionaceae and Cyperaceae From South-West Western Australia

1993 ◽  
Vol 41 (6) ◽  
pp. 733 ◽  
Author(s):  
KA Meney ◽  
KW Dixon ◽  
M Scheltema ◽  
JS Pate

Species of Cyperaceae and Restionaceae were examined for presence of vesicular-arbuscular (VA) mycorrhizal fungi in natural habitat in south-west Western Australia. VA mycorrhizal fungi were detected in roots of two species of Cyperaceae (Lepidosperma gracile and Tetraria capillaris), and two species of Restionaceae (Alexgeorgea nitens and Lyginia barbata), all representing the first records for these genera. Results indicated a very short seasonal period of infection, with VA mycorrhizal fungi representing the genera Acaulospora, Glomus, Scutellospora and Gigaspora identified in roots. VA mycorrhizal fungi were prominent from late autumn to early winter (April-June) and in up to 30% of the young, new season's roots as they penetrated the upper 10 cm region of the soil profile. Mycorrhizal infection was not evident during the dry summer months. This study suggests that mycorrhizas may be important for nutrition of these hosts in these environments but their activity is restricted to a brief period of the growing season.

1979 ◽  
Vol 9 (2) ◽  
pp. 218-223 ◽  
Author(s):  
R. C. Schultz ◽  
P. P. Kormanik ◽  
W. C. Bryan ◽  
G. H. Brister

Seedlings of eight half-sib sweetgum (Liquidambarstyraciflua L.) families were grown for 6 months in a fumigated soil mixture, with or without inoculum from a mixture of Glomusmosseae and Glomusetunicatus fungi, at levels of 140, 280, 560, and 1120 kg/ha of 10–10–10 fertilizer. All seedlings received three additions of 187 kg/ha of N during the growing season. Inoculated seedlings had significantly greater biomass, height, and stem diameters at each fertilizer level than nonmycorrhizal control seedlings. Significant differences in growth occurred between families in mycorrhizal plants. However, fertilizer did not significantly affect growth or nutrient uptake of the seedlings. Inoculation with VA mycorrhizal fungi did not increase N, P, K, or Mg concentrations in the leaves, stems, or roots. Leaves of VA mycorrhizal seedlings had higher concentrations of calcium but stems and roots had lower concentrations of this element than the nonmycorrhizal seedlings. Seedlings with endomycorrhizae contained higher absolute quantities of each nutrient simply because of their greater biomass. The results suggest that the role of VA mycorrhizal fungi in the initial growth of sweetgum seedlings may be the result of physiological stimuli other than increased nutrient uptake.


1977 ◽  
Vol 23 (12) ◽  
pp. 1663-1668 ◽  
Author(s):  
R. N. Ames ◽  
R. G. Linderman

The vesicular-arbuscular (VA) mycorrhizal fungi of commercially grown Easter lily (Lilium longiflorum Thunb.) were studied. Soil and root samples were collected monthly from March through September 1975 from five fields in the coastal area of southern Oregon and northern California. Soil seivings were inoculated onto clover, onion, and lily to cause infections resulting in the production of many new mycorrhizal spores facilitating identification. Four VA mycorrhizal species were found: Acaulospora trappei, A. elegans, Glomus monosporus, and G. fasciculatus. All four VA species infected Easter lily, clover, and onion. Acaulospora trappei and G. fasciculatus were the most commonly isolated species from all five fields.Mycorrhizal infections in roots of field-grown lilies were sparse and presumably young in March and gradually increased in size and number until September when bulbs were harvested. Over 75% of each root system became infected with mycorrhizae in fields with all four fungal species, and those levels were reached by July. In fields with only two mycorrhizal species, usually 50% or less of each root system was infected, even by the end of the growing season.


1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.


1981 ◽  
Vol 59 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Sharon L. Rose

Endemic plants of the Sonoran Desert of Baja California were sampled for mycorrhizal associations. Eight of the 10 plant species examined were colonized by vesicular–arbuscular (VA) mycorrhizal fungi. Soil sievings revealed chlamydospores of three VA mycorrhizal Glomus spp.; G. microcarpus, G. fasciculatus, and G. macrocarpus. At the time of sampling, the populations of VA fungal spores in the soil were low, with one to five chlamydospores per 100 g soil sample.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

Two species of vesicular-arbuscular (VA) mycorrhizal fungi differed in their ability to infect subterranean clover roots when soil pH was changed by liming. In a glasshouse experiment, Glomus fasciculatum infected extensively at each of four levels of soil pH (range 5.3-7.5). Glomus sp. (WUM 16) only infected extensively at the highest pH level. Liming the soil depressed plant growth, but this effect was almost entirely overcome by inoculation with G. fasciculatum. In the second experiment, Glomus sp. (WUM 16) failed to spread from existing infection within roots of subterranean clover when soil pH was 5.3 or lower. The lack of spread of infection was associated with an inability of hyphae of this fungus to grow in the soil used unless it was limed to give a pH at least greater than 5.3.


1992 ◽  
Vol 28 (4) ◽  
pp. 433-442 ◽  
Author(s):  
Edwin Weber ◽  
Eckhard George ◽  
Douglas P. Beck ◽  
Mohan C. Saxena ◽  
Horst Marschner

SUMMARYInoculation with vesicular-arbuscular mycorrhizal fungi (VAMF) improved growth of chick-pea (Cicer arielinum L.) and doubled phosphorus (P) uptake at low and intermediate levels of P fertilization in a pot experiment on sterilized low-P calcareous soil. In field experiments at Tel Hadya, northern Syria, growth, shoot P concentration and seed yield of spring-sown chickpea remained unaffected by inoculation with VAMF or by P fertilization. The mycorrhizal infection of chickpea was high (approximately 75% of root length mycorrhizal at the flowering stage) irrespective of inoculation with VAMF or P fertilization and may ensure efficient P uptake under field conditions.


1981 ◽  
Vol 59 (1) ◽  
pp. 34-39 ◽  
Author(s):  
S. L. Rose ◽  
C. T. Youngberg

Symbiotic associations were established between nitrogen-fixing nonleguminous (actinorrhizal) snowbrush (Ceanothus velutinus Dougl.) seedlings and two categories of microorganisms: vesicular–arbuscular (VA) mycorrhizal fungi and a filamentous actinomycete capable of inducing nodule formation. The actinomycete is housed in nodules where fixation of atmospheric dinitrogen occurs and is made available to the host plant; the mycorrhizal fungus is both inter- and intra-cellular within the root tissue and may be found within the nodules. The two major nutrients, N and P, are made available and can be supplied to the host plant by these two symbiotic microorganisms. The root system of snowbrush seedlings was dually colonized by VA mycorrhizal fungi and a nitrogen-fixing actinomycete and the possibility of a direct interaction between the endophytes in the symbioses was investigated. Dually infected plants showed increases in total dry weight of shoots and roots, number of nodules, weight of nodular tissue, as well as higher levels of N, Ca2+, and P, and an increase in nitrogenase activity as measured by acetylene reduction.


1978 ◽  
Vol 56 (14) ◽  
pp. 1691-1695 ◽  
Author(s):  
Randolph J. Molina ◽  
James M. Trappe ◽  
Gerald S. Strickler

Vesicular–arbuscular mycorrhizal infection and associated mycorrhizal fungi were examined for Festuca viridula, Festuca idahoensis, Festuca scabrella, Festuca thurberi, Festuca ovina, and Festuca arizonica occurring in Festuca-dominated grasslands in the western United States and Canada. All plants were mycorrhizal. Nearly all had mycorrhizal infection in 75% or more of their fine root length. Although levels of infection were consistently high, spore numbers were generally low. No differences in the degree of infection between Festuca species or habitats were observed.Eleven mycorrhizal fungi were identified and ranked by decreasing frequency as follows: Glomus fasciculatus, Glomus tenuis, Gigaspora calospora, Acaulospora laevis, Glomus macrocarpus var. macrocarpus, Glomus microcarpus, Acaulospora scrobiculata, Glomus mosseae, Glomus macrocarpus var. geosporus, Sclerocystis rubiformis, and an unidentified Acaulospora species. It was common to find two or more species infecting an individual plant. The mean number of fungal associates per community site ranged from 2.7 species for F. idahoensis to 5.0 species for F. arizonica. We found no evidence for specificity of any of the mycorrhizal fungi for any particular Festuca host.


2020 ◽  
Vol 71 (2) ◽  
pp. 128 ◽  
Author(s):  
Timothy T. Scanlon ◽  
Greg Doncon

The shift in Indian Ocean sea surface temperatures in 1976 led to a change in rainfall for the broad-scale winter annual grain cropping and pasture region in the south-west of Western Australia (the WA wheatbelt). Agriculture in the eastern part the WA wheatbelt was particularly sensitive to the change in rainfall because it is a marginal area for agronomic production, with low rainfall before changes in sea surface temperature. A second shift in sea surface temperature occurred in 2000, but there has been no analysis of the resulting impact on rainfall in the eastern WA wheatbelt. An analysis of rainfall pre- and post-2000 was performed for sites in the eastern WA wheatbelt in three groups: 19 sites in the west, 56 central, and 10 east. The analysis found a decline in growing-season rainfall (i.e. April–October), especially during May–July, post-2000. Rainfall declines of 49.9 mm (west group), 39.1 mm (central group) and 28.0 mm (east group) represented respective losses of 20.1%, 17.4% and 14.2% of growing-season rainfall. Increases in out-of-season rainfall in the respective groups of 31.0, 33.6, and 50.7 mm (57.8%, 60.8% and 87.6%) meant that annual rainfall changes were smaller than growing-season losses. The west and central groups lost 17.5 and 6.16 mm annual rainfall, whereas the east group gained 15.6 mm. Analysis of wheat yield indicated reductions of 13.5% (west) and 9.90% (central) in the eastern WA wheatbelt; the small group of east sites had a potential yield gain of 8.9% arising from the increased out-of-season rainfall. Further, increased out-of-season rainfall will exacerbate weed and disease growth over the summer fallow.


1983 ◽  
Vol 61 (8) ◽  
pp. 2140-2146 ◽  
Author(s):  
B. A. Daniels Hetrick ◽  
J. Bloom

More vesicular–arbuscular mycorrhizal (VAM) fungal species and significantly more fungal spores were recovered from undisturbed prairie soils than four winter wheat field soils in Kansas through the 1980–1981 growing season. Two previously undescribed sporocarpic species of Endogonaceae were found in prairie samples but have not been successfully established in pot culture, leaving the genus to which they belong unclear. Though variable, 11–50% VAM root colonization was evident in all prairie grass roots sampled throughout the year. In contrast, no identifiable VAM root colonization was evident in wheat until May after flowering when 27% root colonization was observed. During the 1981–1982 growing season, roots of two other wheat fields were sampled with similar results. No colonization occurred until May when 8% root colonization was evident. The possible influence of such low levels of root colonization occurring quite late in the growing season of winter wheat is discussed.


Sign in / Sign up

Export Citation Format

Share Document