Root growth and root growth capacity of white spruce (Piceaglauca (Moench) Voss) seedlings

1985 ◽  
Vol 15 (4) ◽  
pp. 625-630 ◽  
Author(s):  
Anne M. Johnson-Flanagan ◽  
John N. Owens

Root growth in the root systems of Styroplug-grown white spruce (Piceaglauca (Moench) Voss) seedlings increases in the spring before shoot elongation and again in the fall after bud development is complete. This is followed by root dormancy and quiescence, which are distinguished on the basis of ability to elongate under root growth capacity (RGC) conditions. The number of white long lateral roots produced during RGC tests correlated significantly with the number of white long lateral roots under lathhouse conditions. Increased mitotic activity is required for root elongation. However, mitotic frequencies could not be used to assess RGC because of the confounding effects of independent growth cycles in individual roots. Cell expansion and transformation of insoluble carbohydrates are important controls of root elongation. The relationship between root and shoot growth under RGC conditions may not support the role of shoot elongation in decreasing root elongation. Conversely, this may indicate that RGC tests alter the endogenous controls of root and shoot growth.

1984 ◽  
Vol 14 (5) ◽  
pp. 644-651 ◽  
Author(s):  
A. N. Burdett ◽  
L. J. Herring ◽  
C. F. Thompson

Observations were made on the growth of white spruce (Piceaglauca (Moench) Voss) and Engelmann spruce (P. engelmanni Parry), each planted at a single location in the interior of British Columbia. In both species bareroot stock (either 2 + 0 seedlings or 2 + 1 transplants) with a low root growth capacity made only limited height growth during the first two seasons after planting. In the first season, many short stem units were formed, whereas in the second season, stem units were much longer but many fewer. The length of needles formed after planting by the bareroot trees was, in the first season, only about half that of needles formed the previous year in the nursery. Needle length increased slightly in the 2nd year. Container-grown trees (1 + 0 seedlings from 336-mL containers), which had a high root growth capacity, made relatively good height growth in the first season when they formed long needles and stem units. Height growth by these seedlings was much less in the second season, however, as were needle length and stem unit number, but not stem unit length. Application of slow release N,P, and K fertilizer at planting improved shoot growth by bareroot trees more in the second season than the first. In contrast, the container-grown stock made a large shoot growth response to fertilization in both the first and the second seasons. The results are consistent with the hypothesis that, as root establishment proceeds, shoot growth tends to be limited by the supply, first of water, then of mineral nutrients. This implies that the early growth of planted spruce can be maximized by using stock with a high root growth capacity, or other adaptations to drought, and applying slow release fertilizer at planting. Observations on the white spruce revealed an acceleration in shoot growth by both stock types during the third season. This followed the establishment, by the end of the second season, of root systems several metres in diameter. A large difference in height: diameter ratio, observed at the time of planting, between the container-grown and bareroot white spruce disappeared entirely in the course of the first three growing seasons.


1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


1992 ◽  
Vol 22 (5) ◽  
pp. 740-749 ◽  
Author(s):  
R. van den Driessche

Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), lodgepole pine (Pinuscontorta Dougl.), and white spruce (Piceaglauca (Moench) Voss) seedlings, each represented by two seed lots, were grown in Styroblock containers in a greenhouse and plastic shelter house from February 1989 to January 1990. The seedlings were exposed to two nitrogen (N) treatments and three potassium (K) treatments arranged factorially within three drought treatments. After winter storage, seedlings from a complete set of treatments were planted into hygric, mesic, and xeric sand beds during 12–14 March. Increasing nursery drought stress increased survival of Douglas-fir and lodgepole pine after planting, and high N treatment level increased survival of lodgepole pine and white spruce. Under xeric conditions, combined nursery drought and high N treatments increased survival of lodgepole pine by 33%, indicating the importance of nursery cultural regime for stock quality. Increase in nursery drought decreased seedling size relatively little, but increase in N increased seedling size one season after planting. A positive relationship between shoot/root ratio and survival in lodgepole pine and white spruce indicated that increase in N increased both shoot growth and drought resistance over the N range investigated. Only Douglas-fir showed an interaction between drought and N treatment and a small response in both survival and dry weight to K. Root growth capacity, measured at the time of planting, showed an approximate doubling in all species due to high N treatment, and was also increased in white spruce by drought stress. Survival and root growth capacity were poorly correlated, but dry-weight growth in sand beds was well correlated with root growth capacity. Shoot dry weight and percent N in shoots measured after nursery growth were correlated with root growth capacity. Manipulation of root growth capacity by changing nursery treatment was apparently possible without altering resistance to drought stress after planting.


1991 ◽  
Vol 67 (2) ◽  
pp. 147-154 ◽  
Author(s):  
F. T. Pendl ◽  
B. N. D'Anjou

Four stock types of amabilis fir (Abies amabilis) planted on Vancouver Island were compared for root growth capacity and field performance. Initial root growth capacity ratings and field performance of the stock types after five years differed significantly. Ranking the stock types by decreasing survival, stem height and diameter: 1 + 1 PBR 211 (89.4%, 78 cm, 15.7 mm), 1 + 0 PSB 313 (79.7%, 73 cm, 13.8 mm), 1 + 0 PSB 211 (76.8%, 66 cm, 12.9 mm) and 2 + 0 BR (58.9%, 59 cm, 11.0 mm). Given current nursery and planting costs and survival rates, the 1 + 0 PSB 313 and 211 are least expensive reforestation options, the 2 + 0 BR and 1 + 1 PBR 211 the most expensive. Root form of samples of each stock type lack well developed tap and lateral roots with root spiralling evident in the styroblock stock. Key words: Amabilis fir, stock types, bareroot, styroblock plugs


1989 ◽  
Vol 19 (11) ◽  
pp. 1478-1482 ◽  
Author(s):  
William Vidaver ◽  
Wolfgang Binder ◽  
R. C. Brooke ◽  
G. R. Lister ◽  
P. M. A. Toivonen

Photosynthetic activity of intact nursery-grown white spruce (Piceaglauca (Moench) Voss) seedlings was assessed by measuring CO2 exchange (apparent photosynthesis) and normalized, integrated variable chlorophyll fluorescence emission. Agreement between fluorescence and apparent photosynthesis indicated that photosynthetic inactivation of seedlings from selected seedlots began in mid-August and approached completion in late October. Inactivation occurred somewhat earlier in northern seedlot seedlings than in those from a more southerly provenance. Seedlings tested in late October showed significant photosynthetic inactivation, as indicated by both fluorescence and apparent photosynthesis. These seedlings also had passed the −18 °C frost hardiness test currently used in British Columbia as an indicator for safe lifting. On removal from −2 °C storage, seedlings lifted and stored according to nursery practises showed fluorescence emission indicative of photosynthetic reactivation and also had high root growth capacity scores. Low root growth capacity scores were associated with delayed or incomplete photosynthetic reactivation. These results show that fluorescence assessment provides information about the physiological status of white spruce seedlings. Variable fluorescence assays are nondestructive and can be made and interpreted within minutes. As an indicator of shoot metabolic activity, fluorescence assessment provides information useful in selecting lifting dates and in evaluating the effects of dark cold storage on white spruce seedlings.


1991 ◽  
Vol 21 (5) ◽  
pp. 566-572 ◽  
Author(s):  
R. van den Driessche

Seedlings of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), lodgepole pine (Pinuscontorta Dougl.), and white spruce (Piceaglauca (Moench) Voss) were grown in a container nursery from February to July 1988 and then exposed to three temperatures and three levels of drought stress applied factorially during mid-July to October 1988. Seedlings were retained in a shelter house until January 1989, when they were cold-stored until early May. Measurements of stomatal conductance (gs), transpiration (E), and specific leaf area (SLA) were made at the end of the treatment period in September 1988 and again after growth the following year at the end of June. Root growth capacity (RGC) was tested in early May 1989. Results were considered in conjunction with performance of other samples of the same plants that had been planted in sand beds in April 1989, where irrigation was regulated to provide three levels of moisture stress. Low temperature (13 °C) generally reduced gs and E, which were adjusted for xylem pressure potential, and SLA in all species by the time nursery treatment was completed at the end of September. No effect of nursery temperature treatment on gs and E could be detected when new needles were measured in June and July (after 9 to 12 weeks of growth), but SLA of lodgepole pine increased with nursery temperature treatment, and SLA of white spruce decreased with nursery temperature treatment. RGC was higher for the 13 °C treatment than for the 16 and 20 °C treatments. Survival of outplanted seedlings was mainly inversely related to nursery temperature. Low nursery temperature reduced gs, E, and SLA and increased RGC. SLA of planted lodgepole pine increased with level of nursery drought treatment, and severe nursery drought increased gs under stress, when measured in June. No other effects of drought were detected, although drought treatment was effective in increasing survival of planted seedlings.


1984 ◽  
Vol 60 (6) ◽  
pp. 335-339 ◽  
Author(s):  
David G. Simpson

The antitranspirants, XEF-4-3561-A. Wilt Pruf, Plantgard, Folicote, Clear Spray, and Vapor Gard, were sprayed on container-grown lodgepole pine, white spruce, western hemlock, and Douglas-fir seedlings before or after a 12-week cold (+ 2 °C) storage period. The effects of the six antitranspirants on root growth capacity, storability, and field performance varied between species. XEF-4-3561-A. Wilt Pruf, Folicote, and Vapor Gard increased moisture stress avoidance of all species, while Plantgard and Clear Spray had no effect. None of the six antitranspirants are recommended for use on white spruce, western hemlock, or Douglas-fir planting stock because of the risk of reducing field performance. Further trials of XEF-4-3561-A and Wilt Pruf on lodgepolo pine seedlings seem War-ranted.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 592c-592
Author(s):  
Daniel I. Leskovar ◽  
Ronald R. Heineman

This study was conducted to investigate how irrigation systems alter root elongation, root morphology, shoot growth characteristics and yield of `TAM-M' jalapeno pepper seedlings. Transplants were grown in containerized trays (18 cm3/cell) for 6 weeks in a greenhouse in Spring 1991. Irrigation systems were: a) floatation (FI), b) 4-week floatation plus 2-week overhead (FI+OI); c) alternate floatation and overhead (FI/OI), and d) overhead (OI). The growing media was maintained between 50 and 20% of its water holding capacity. Between 20 and 41 days after seeding (DAS), FI and FI/OI transplants maintained a constant lateral root length increase. In both FI+OI and OI transplants, lateral root elongation response tended to a `plateau' at ≈ 31 DAS. However, between 31 and 41 DAS, OI transplants had a root growth compensation, increasing the number and length (33%) of basal roots. In FI+OI transplants, basal root growth compensation occurred later in the field. At planting, OI transplants had higher shoot/root ratio (S:R=5) and maintained a higher shoot water potential (ψ= -0.58 MPa) than FI transplants (S:R=3; ψ= -0.69 MPa), respectively. Overhead-irrigated transplants had higher early fruit yields than floatation-irrigated transplants, but total yields were unaffected.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1174c-1174
Author(s):  
Jeff S. Kuehny ◽  
Mary C. Halbrooks

Episodic growth is a term used to define alternate episodes of root and shoot growth. Fresh weight gain of Ligustrum japonicum roots and shoots was continuous through each episode of shoot elongation. Root:shoot ratio, however varied over time and oscillated with each episode of shoot elongation. During shoot elongation the percent fresh weight (of whole plant weight) allocated to the shoot decreased while the percent allocated to roots increased. During cessation of shoot elongation the percent fresh weight allocated to the shoot increased; while percent allocated to roots decreased. Formation of lateral roots was synchronous with shoot elongation.


Sign in / Sign up

Export Citation Format

Share Document