scholarly journals EPISODIC ROOT AND SHOOT GROWTH IN A WOODY ORNAMENTAL

HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1174c-1174
Author(s):  
Jeff S. Kuehny ◽  
Mary C. Halbrooks

Episodic growth is a term used to define alternate episodes of root and shoot growth. Fresh weight gain of Ligustrum japonicum roots and shoots was continuous through each episode of shoot elongation. Root:shoot ratio, however varied over time and oscillated with each episode of shoot elongation. During shoot elongation the percent fresh weight (of whole plant weight) allocated to the shoot decreased while the percent allocated to roots increased. During cessation of shoot elongation the percent fresh weight allocated to the shoot increased; while percent allocated to roots decreased. Formation of lateral roots was synchronous with shoot elongation.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 570b-570
Author(s):  
Jeff S. Kuehny ◽  
Mary C. Halbrooks

Research defining actual changes in weight gain of roots and shoots during growth episodes of woody ornamentals is limited. The objective of this study was to develop a better understanding of the patterns of root and shoot growth, nitrogen uptake, and changes in carbohydrate and protein content of Ligustrum japonicum, an episodic species. Shoot elongation and lateral root formation were synchronous. The greatest increase in shoot percent of whole plant fresh weight occurred after shoot elongation however, and the greatest increase in root percent of whole plant fresh weight occurred during shoot elongation. Nitrate uptake was highest during shoot elongation and lateral root formation. Carbohydrate and protein content also varied with each episode of growth.


1997 ◽  
Vol 122 (5) ◽  
pp. 634-641 ◽  
Author(s):  
Jeff S. Kuehny ◽  
William B. Miller ◽  
Dennis R. Decoteau

Rooted cuttings of Ligustrum japonicum Thunb., an episodically growing species, were grown hydroponically in a controlled-environment growth chamber to determine allocation of glucose, mannitol, total soluble sugars, and total protein in mature leaves, flush leaves, stems, and roots. During the 65 days of episodic growth, 43% of the total soluble sugars was glucose and 33% mannitol. Glucose concentrations of mature leaves decreased during the first root growth episode, increased in almost all plant tissue during a shoot growth episode and decreased in all plant tissue at initiation of a second root growth episode. Mannitol concentrations in the roots and stems decreased during episodes of root growth and increased during a shoot growth episode when leaf flush mannitol concentrations increased. Radiolabeled C applied to leaves before the initiation of the first period of shoot elongation was translocated to the roots. After shoot elongation, just before a root growth episode, most labeled C was translocated to new shoots and roots. Autoradiographs indicated that subsequent episodes of shoot growth were supported by photosynthate from the previous shoot flush. Protein concentrations decreased in all plant tissues during shoot growth but increased in roots and mature leaves during root growth. Concentrations of 15N in leaf and stem tissue indicated retranslocated N supported each episode of shoot growth. Changes in endogenous C and N concentrations and allocation patterns in ligustrum were linked to the control of episodic shoot and root growth.


1985 ◽  
Vol 15 (4) ◽  
pp. 625-630 ◽  
Author(s):  
Anne M. Johnson-Flanagan ◽  
John N. Owens

Root growth in the root systems of Styroplug-grown white spruce (Piceaglauca (Moench) Voss) seedlings increases in the spring before shoot elongation and again in the fall after bud development is complete. This is followed by root dormancy and quiescence, which are distinguished on the basis of ability to elongate under root growth capacity (RGC) conditions. The number of white long lateral roots produced during RGC tests correlated significantly with the number of white long lateral roots under lathhouse conditions. Increased mitotic activity is required for root elongation. However, mitotic frequencies could not be used to assess RGC because of the confounding effects of independent growth cycles in individual roots. Cell expansion and transformation of insoluble carbohydrates are important controls of root elongation. The relationship between root and shoot growth under RGC conditions may not support the role of shoot elongation in decreasing root elongation. Conversely, this may indicate that RGC tests alter the endogenous controls of root and shoot growth.


1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


1968 ◽  
Vol 19 (2) ◽  
pp. 221 ◽  
Author(s):  
DG Morgan

Single plants of Festuca arundinacea (cv. S170) were treated with gibberellic acid (GA) and the sequence of effects on the growth of the whole plant and of various organs followed by means of growth analysis. The first effect of GA was to change the distribution of dry matter between shoot and root and between tillers within the shoot without affecting total plant weight. Shoot growth was increased and resulted in a larger amount of photosynthetic tissue with a higher net assimilation rate; total plant weight increased as a consequence of these effects. The significance of these results in interpreting previous work on the effects of GA on dry matter production in grasses and other plants is discussed.


1994 ◽  
Vol 12 (1) ◽  
pp. 43-46
Author(s):  
Jeff S. Kuehny ◽  
Dennis R. Decoteau

Abstract Exclusion of nitrogen and light from existing leaves at initiation of an episode of shoot growth decreased shoot and root relative growth rate. The combination of both nitrogen and light exclusion synergistically impacted relative growth rate for shoot (RGRs) and relative growth rate for root (RGRr). The next episode of shoot growth provided sufficient leaf area for carbohydrate assimilation and maintaining shoot and root growth rates when light was excluded from mature leaves. A better understanding of the developmental and biochemical changes of this episodic species provided useful information for timing of fertilizer application and transplanting of Ligustrum and other episodic species.


1987 ◽  
Vol 1 (2) ◽  
pp. 154-161 ◽  
Author(s):  
William W. Donald

Chlorsulfuron [2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino] carbonyl] benzenesulfonamide], applied at 9 to 560 g ai/ha to the soil surface, stopped shoot elongation of well established Canada thistle [Cirsium arvense(L.) Scop. #4CIRAR] plants in the greenhouse. Root fresh weight decreased progressively as chlorsulfuron rate was increased when measured 1 month after treatment. In contrast, the number of visible root buds plus secondary shoots increased 1.9- to 2.3-fold between 9 and 67 g/ha chlorsulfuron 1 month after soil surface treatment. Despite more numerous root buds, the number of secondary shoots arising from adventitious root buds progressively decreased as chlorsulfuron rate was raised. Increases in the number of visible root buds were observed first between 3 and 4 weeks following soil application with 67 g/ha of chlorsulfuron, 2 weeks after shoot growth stopped.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1634-1640 ◽  
Author(s):  
Dilma Daniela Silva ◽  
Michael E. Kane ◽  
Richard C. Beeson

Although effects of irrigation frequency and volumes on overall plant establishment and growth have been reported, previous research has not examined how intermittent exposure to substrate water limitation affects partitioning of growth between root tips and buds and how this influences episodic growth patterns. The research presented here examines these effects on Ligustrum japonicum during the establishment period. Plants were exposed to two irrigation treatments: short wetting and drying cycles (SC, 2 days) and long wetting and drying cycles (LC, 7 days). Intermittent water limitations (LC) resulted in new shoot dry mass reductions of ≈28% compared with well-irrigated counterparts, particularly diminishing leaf growth. Water limitation effects on root-to-shoot ratio were dependent on plant growth stage. LC increased root-to-shoot ratios only when plants were at shoot flush, resulting in poor correlations (r = 0.53) between this ratio and differential percent volumetric water content, which was directly influenced by irrigation frequency. Patterns of shoot and root growth varied considerably between these clonal plants, which may be an important consideration on analyses of populations of woody plants. Large periods of episodic growth were not observed for most of the experimental period, but only after plant establishment. Root growth was similar in both treatments and there was no clear arresting of root growth during the experimental period. SC plants started bud expansion earlier than LC and had more shoot flushes and cumulative shoot growing points. A 7-day irrigation cycle was sufficient to establish two-year-old L. japonicum plants; however, shoot growth was less pronounced than root growth compared with plants irrigated on a 2-day cycle.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 268A-268
Author(s):  
Jose Reynaldo A. Santos ◽  
Daniel I. Leskovar

Broccoli, cabbage, and cauliflower were grown in the greenhouse on fallowed soil (FS) or on soil previously cropped with broccoli CBS) for three years. Fertilization levels (kg/ha) were none, 67N-22P, and 135N-44P. Inhibition of root and shoot growth components, and leaf color was evaluated at 30, 44, 58, and 72 days after seeding. Shoot and root growth of cauliflower, grown on BS, progressively declined over time, while that of broccoli and cabbage either increased or remained unaffected. Application of fertilizer (67N-22P) improved the shoot growth of cabbage but did not alleviate the symptoms associated with allelopathy, i.e., stunted growth, leaf chlorosis, reduced leaf area, observed in cauliflower. Whole plant extract of broccoli decreased percent germination of cauliflower, and reduced the speed of germination of all three test crops in the order of cauliflower>broccoli>cabbage.


1989 ◽  
Vol 25 (3) ◽  
pp. 375-387 ◽  
Author(s):  
A. Wahbi ◽  
P. J. Gregory

SUMMARYSeedlings of 48 genotypes of barley were grown in a glasshouse in different rooting media to determine the possible range of variation in root and shoot systems. Plants grown in nutrient solution produced shoots which were larger than those grown in sand and perlite, but in sand and perlite almost twice as much root length was produced per unit of shoot area. There were large differences between genotypes in both root and shoot growth.The effects of growing medium on rooting were studied in more detail on six of the genotypes. Plants grown in soil and nutrient solution had longer lateral roots than those grown in sand and perlite. Genotypic variation in growth was large but the range of root and shoot growth in a particular medium was similar. Generally, the ranking of the genotypes was similar in both studies and in all media.


Sign in / Sign up

Export Citation Format

Share Document