Effects of PACAP1–27 on the canine endocrine pancreas in vivo: interaction with cholinergic mechanism

2003 ◽  
Vol 81 (7) ◽  
pp. 720-729 ◽  
Author(s):  
Nobuharu Yamaguchi ◽  
Tamar Rita Minassian ◽  
Sanae Yamaguchi

The aim of the present study was to characterize the effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the endocrine pancreas in anesthetized dogs. PACAP1–27 and a PACAP receptor (PAC1) blocker, PACAP6–27, were locally administered to the pancreas. PACAP1–27 (0.005–5 μg) increased basal insulin and glucagon secretion in a dose-dependent manner. PACAP6–27 (200 μg) blocked the glucagon response to PACAP1–27 (0.5 μg) by about 80%, while the insulin response remained unchanged. With a higher dose of PACAP6–27 (500 μg), both responses to PACAP1–27 were inhibited by more than 80%. In the presence of atropine with an equivalent dose (128.2 μg) of PACAP6–27 (500 μg) on a molar basis, the insulin response to PACAP1–27 was diminished by about 20%, while the glucagon response was enhanced by about 80%. The PACAP1–27-induced increase in pancreatic venous blood flow was blocked by PACAP6–27 but not by atropine. The study suggests that the endocrine secretagogue effect of PACAP1–27 is primarily mediated by the PAC1 receptor, and that PACAP1–27 may interact with muscarinic receptor function in PACAP-induced insulin and glucagon secretion in the canine pancreas in vivo.Key words: atropine, PACAP, PAC1, muscarinic, interaction.

1999 ◽  
Vol 77 (5) ◽  
pp. 367-374 ◽  
Author(s):  
Daniel Martineau ◽  
Stéphane Lamouche ◽  
Richard Briand ◽  
Nobuharu Yamaguchi

The aim of the present study was to analyse modulations of adrenal catecholamine secretion from the adrenal gland of anesthetized dogs in response to locally administered angiotensin II (AngII) in the presence of either PD 123319 or CGP 42112, both of which are highly specific and selective ligands to angiotensin AT2 receptor. Plasma concentrations of epinephrine and norepinephrine in adrenal venous and aortic blood were quantified by a high performance liquid chromatography coupled with electrochemical detection (HPLC-EC) method. Adrenal venous blood flow was measured by gravimetry. Local administration of AngII (0.05 µg, 0.1 µM) to the left adrenal gland increased adrenal gland catecholamine output more than 30 times that found in nonstimulated states. Administration of either PD 123319 (0.085 µg (0.23 µM) to 8.5 µg (23 µM)) or CGP 42112 (0.005 µg (0.01 µM) to 5 µg (10 µM)) did not affect the basal catecholamine output significantly. The increase in adrenal catecholamine output in response to AngII was inhibited by ~80% following the largest dose of PD 123319. CGP 42112 significantly attenuated the catecholamine response to AngII by ~70%. PD 123319 and CGP 42112 were devoid of any agonist actions with respect to catecholamine output by the adrenal gland in vivo. Furthermore, both PD 123319 and CGP 42112 inhibited the increase in adrenal catecholamine secretion induced by local administration of AngII. The present study suggests that AT2 receptors play a role in mediating catecholamine secretion by the adrenal medulla in response to AngII receptor agonist administration in vivo.Key words: AT1 and AT2 subtypes, PD 123319, CGP 42112, AT2 antagonist, anesthetized dog.


1977 ◽  
Vol 232 (2) ◽  
pp. E197 ◽  
Author(s):  
M Schebalin ◽  
S I Said ◽  
G M Makhlouf

In vivo, vasoactive intestinal peptide (VIP) produces simultaneous increases in blood glucose and insulin levels. In order to determine whether VIP, like its homologues, also stimulates insulin secretion directly, studies were made in controlled glucose media employing the vascularly perfused cat pancreas. VIP stimulated insulin secretion significantly in the presence of constant physiological concentrations of glucose. The highest insulin response to VIP (100.3+/-8.1 muU/min) approached the highest insulin response to glucose (119.9 +/- 12.0 muU/min). In the absence of glucose, the insulin response to VIP was insignificant. Unexpectedly, VIP was found to be a more effective stimulant of glucagon than of insulin secretion. The highest glucagon response to VIP (327+/-51% of control levels) was attained in the presence of physiological concentrations of glucose and equalled the glucagon response obtained upon withdrawal of glucose from the perfusate. The glucagon response to VIP was blocked by increasing the glucose in the perfusate. These studies indicate the VIP present in pancreatic islets might play a role in the local control of pancreatic endocrine function.


2001 ◽  
Vol 280 (2) ◽  
pp. R510-R518 ◽  
Author(s):  
Stéphane Lamouche ◽  
Nobuharu Yamaguchi

The present study was conducted to investigate the functional implication of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC1) receptor in the adrenal catecholamine (CA) secretion induced by either PACAP-27 or vasoactive intestinal polypeptide (VIP) in anesthetized dogs. PACAP-27, VIP, and their respective antagonists were locally infused to the left adrenal gland via the left adrenolumbar artery. Plasma CA concentrations in adrenal venous and aortic blood were determined by means of a high-performance liquid chromatograph coupled with an electrochemical detector. Adrenal venous blood flow was measured by gravimetry. The administration of PACAP-27 (50 ng) resulted in a significant increase in adrenal CA output. VIP (5 μg) also increased the basal CA secretion to an extent comparable to that observed with PACAP-27. In the presence of PACAP partial sequence 6–27 [PACAP-(6–27); a PAC1 receptor antagonist] at the doses of 7.5 and 15 μg, the CA response to PACAP-27 was attenuated by ∼50 and ∼95%, respectively. Although the CA secretagogue effect of VIP was blocked by ∼85% in the presence of PACAP-(6–27) (15 μg), it remained unaffected by VIP partial sequence 10–28 [VIP-(10–28); a VIP receptor antagonist] at the dose of 15 μg. Furthermore, the CA response to PACAP-27 did not change in the presence of the same dose of VIP-(10–28). The results indicate that PACAP-(6–27) diminished, in a dose-dependent manner, the increase in adrenal CA secretion induced by PACAP-27. The results also indicate that the CA response to either PACAP-27 or VIP was selectively inhibited by PACAP-(6–27) but not by VIP-(10–28). It is concluded that PAC1receptor is primarily involved in the CA secretion induced by both PACAP-27 and VIP in the canine adrenal medulla in vivo.


1999 ◽  
Vol 276 (1) ◽  
pp. R162-R170 ◽  
Author(s):  
Stéphane Lamouche ◽  
Daniel Martineau ◽  
Nobuharu Yamaguchi

The aim of the present study was to investigate whether pituitary adenylate cyclase-activating polypeptide-(1—27) (PACAP27) can modulate the adrenal catecholamine (CA) secretion induced by splanchnic nerve stimulation (SNS) and by exogenous acetylcholine (ACh) in anesthetized dogs. Plasma CA concentrations in adrenal venous and aortic blood were quantified by a high-performance liquid chromatography coupled with electrochemical detection. Adrenal venous blood flow was measured by gravimetry. Local infusion of PACAP27 (0.5, 5, and 50 ng) to the left adrenal gland via the adrenolumbar artery resulted in an increase in CA output, reaching a significant level at the highest dose tested. Either direct SNS (2 Hz) or local infusion of ACh (0.5 μg) to the left adrenal gland produced significant increases in CA output to an extent similar to that obtained with 50 ng of PACAP27 alone. In the presence of PACAP27 (50 ng), CA responses to either SNS or exogenous ACh were significantly potentiated by approximately four- and sixfold, respectively, compared with those obtained in response to each stimulus alone. However, the enhanced CA responses to ACh were not significantly different from those to SNS. The results indicate that the increase in adrenal CA secretion, induced by either direct SNS or exogenous ACh, is synergistically enhanced by PACAP27. The study suggests that the enhanced CA secretion may result from the activation of a PACAP-mediated facilitatory mechanism(s) localized presumably at the postsynaptic level in the canine adrenal medulla in vivo, although the possible involvement of presynaptic mechanisms cannot completely be ruled out in the present study.


1999 ◽  
Vol 277 (4) ◽  
pp. E617-E623 ◽  
Author(s):  
Christophe Broca ◽  
René Gross ◽  
Pierre Petit ◽  
Yves Sauvaire ◽  
Michèle Manteghetti ◽  
...  

We have recently shown in vitro that 4-hydroxyisoleucine (4-OH-Ile), an amino acid extracted from fenugreek seeds, potentiates insulin secretion in a glucose-dependent manner. The present study was designed to investigate whether 4-OH-Ile could exert in vivo insulinotropic and antidiabetic properties. For this purpose, intravenous or oral glucose tolerance tests (IVGTTs and OGTTs, respectively) were performed not only in normal animals but also in a type II diabetes rat model. During IVGTT in normal rats or OGTT in normal dogs, 4-OH-Ile (18 mg/kg) improved glucose tolerance. The lactonic form of 4-OH-Ile was ineffective in normal rats. In non-insulin-dependent diabetic (NIDD) rats, a single intravenous administration of 4-OH-Ile (50 mg/kg) partially restored glucose-induced insulin response without affecting glucose tolerance; a 6-day subchronic administration of 4-OH-Ile (50 mg/kg, daily) reduced basal hyperglycemia, decreased basal insulinemia, and slightly, but significantly, improved glucose tolerance. In vitro, 4-OH-Ile (200 μM) potentiated glucose (16.7 mM)-induced insulin release from NIDD rat-isolated islets. So, the antidiabetic effects of 4-OH-Ile on NIDD rats result, at least in part, from a direct pancreatic B cell stimulation.


2021 ◽  
Author(s):  
Francesco Carlomagno ◽  
Carlotta Pozza ◽  
Marta Tenuta ◽  
Riccardo Pofi ◽  
Luigi Tarani ◽  
...  

ABSTRACTContextExperimental studies on Klinefelter syndrome (KS) reported increased intratesticular testosterone (T) levels coexisting with reduced circulating levels. Abnormalities in testicular microcirculation have been claimed; however, no studies investigated in vivo testicular blood flow dynamics in humans with KS.ObjectiveTo analyze the testicular microcirculation in KS by contrast-enhanced ultrasonography (CEUS) and correlate vascular parameters with endocrine function.Design and SettingProspective study. University Settings.Patients51 testicular scans, 17 testes from 10 T-naïve subjects with KS and 34 testes from age-matched eugonadal men (CNT) who underwent CEUS for incidental nonpalpable testicular lesions.Main OutcomesCEUS kinetic parameters.ResultsCEUS revealed slower testicular perfusion kinetics in subjects with KS than in age-matched CNT. Specifically, the wash-in time (Tin, p = 0.008), mean transit time (MTT, p = 0.008), time to peak (TTP, p < 0.001), and washout time (Tout 50%, p = 0.008) were all prolonged. Faster testicular blood flow was associated with higher total T levels. Principal component analysis and multiple linear regression analyses confirmed the findings, and supported a role for reduced venous blood flow as independent predictor of total T levels.ConclusionsTesticular venous blood flow is altered in KS and independently predicts T peripheral release.


1979 ◽  
Vol 236 (6) ◽  
pp. E626
Author(s):  
R J Alteveer ◽  
M J Jaffe ◽  
J Van Dam

Surgical procedures are detailed that have yielded for the first time an in vivo vascularly isolated, autoperfused preparation of the entire pancreas in anesthetized dogs. Previous studies had isolated only part of the pancreas or had resorted to blood-flow techniques not requiring pooled pancreatic venous blood, necessary for metabolic studies of the organ. Pancreatic blood flow (48 ml/min), O2 uptake (180 mumol/min), glucose uptake (51.0 mumol/min), lactate output (6.6 mumol/min), net free fatty acid uptake (2.23 mumol/min), all per 100 g tissue, and various other measured and calculated hemodynamic and metabolic variables were determined on the preparation during control conditions. The stability of the preparation was verified by serial determinations of these parameters and of blood alpha-amylase and beta-glucuronidase levels from 1 to 2.5 h postsurgery. Metabolic rate and glucose uptake were both found to be much higher than in intestinal tissues and approached values characteristic of liver tissue.


1999 ◽  
Vol 276 (4) ◽  
pp. R1118-R1124
Author(s):  
Kimiya Masada ◽  
Takahiro Nagayama ◽  
Akio Hosokawa ◽  
Makoto Yoshida ◽  
Mizue Suzuki-Kusaba ◽  
...  

We examined the effects of proadrenomedullin-derived peptides on the release of adrenal catecholamines in response to cholinergic stimuli in pentobarbital sodium-anesthetized dogs. Drugs were administered into the adrenal gland through the phrenicoabdominal artery. Splanchnic nerve stimulation (1, 2, and 3 Hz) and ACh injection (0.75, 1.5, and 3 μg) produced frequency- or dose-dependent increases in adrenal catecholamine output. These responses were unaffected by infusion of adrenomedullin (1, 3, and 10 ng ⋅ kg−1 ⋅ min−1) or its selective antagonist adrenomedullin-(22—52) (5, 15, and 50 ng ⋅ kg−1 ⋅ min−1). Proadrenomedullin NH2-terminal 20 peptide (PAMP; 5, 15, and 50 ng ⋅ kg−1 ⋅ min−1) suppressed both the splanchnic nerve stimulation- and ACh-induced increases in catecholamine output in a dose-dependent manner. PAMP also suppressed the catecholamine release responses to the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (0.5, 1, and 2 μg) and to muscarine (0.5, 1, and 2 μg), although the muscarine-induced response was relatively resistant to PAMP. These results suggest that PAMP, but not adrenomedullin, can act as an inhibitory regulator of adrenal catecholamine release in vivo.


Sign in / Sign up

Export Citation Format

Share Document