A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats

2010 ◽  
Vol 88 (12) ◽  
pp. 1157-1165 ◽  
Author(s):  
Samyra L. Buzelle ◽  
Maísa P. Santos ◽  
Amanda M. Baviera ◽  
Carbene F. Lopes ◽  
Maria A.R. Garófalo ◽  
...  

The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity — i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P — was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.

2013 ◽  
Vol 33 (6) ◽  
pp. 494-502 ◽  
Author(s):  
Andreza Lúcia Menezes ◽  
Mayara Peron Pereira ◽  
Samyra Lopes Buzelle ◽  
Maísa Pavani dos Santos ◽  
Suélem Aparecida de França ◽  
...  

Nutrition ◽  
2014 ◽  
Vol 30 (4) ◽  
pp. 473-480 ◽  
Author(s):  
Suélem Aparecida de França ◽  
Maísa Pavani dos Santos ◽  
Roger Vinícius Nunes Queiroz da Costa ◽  
Mendalli Froelich ◽  
Samyra Lopes Buzelle ◽  
...  

2001 ◽  
Vol 85 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Nigel D. Scollan ◽  
Nag-Jin Choi ◽  
Esra Kurt ◽  
Alan V. Fisher ◽  
Mike Enser ◽  
...  

Enhancing the n-3 polyunsaturated fatty acid (PUFA) content of beef is important in view of the generally saturated nature of fatty acids in ruminant meats and the negative effect this can have on human health. This study examined the effects of different sources of dietary n-3 PUFA on the performance of steers and the fatty acid composition of m. longissimus thoracis muscle and associated subcutaneous adipose tissue. Animals were fed ad libitum on grass silage plus one of four concentrates (60:40 forage:concentrate on a DM basis) containing differing sources of lipid: Megalac (16:0), lightly bruised whole linseed (18:3n-3), fish oil (20:5n-3 and 22:6n-3) and a mixture of linseed and fish oil (1:1, on an oil basis). Diets were formulated so that total dietary oil intake was 6 %, approximately half of which was from the experimental test oil. Linseed feeding not only increased the levels of 18:3n-3 in muscle phospholipid from 9·5 to 19 mg/100 g muscle but also enhanced the synthesis of 20:5n-3, the level of which increased from 10 to 15 mg/100 g muscle. Linseed also increased the proportion of 18:3n-3 in muscle neutral lipid and in adipose tissue lipids by a factor of 1·64 and 1·75 respectively. Fish oil feeding doubled the proportion of 20:5n-3 and 22:6n-3 in muscle phospholipids. The proportion of 18:1 trans in muscle neutral lipid was higher on the n-3 PUFA diets than the control diet, 0·04 and 0·02 respectively. Despite the implied modification to rumen metabolism, lipid source did not affect feed intake, growth rate, cold carcass weight or carcass fatness, but carcass conformation score was higher on fish oil treatments (P<0·05). However, total muscle fatty acid content was not different between treatments and ranged from 3·5–4·3 % of tissue weight. The increase in n-3 PUFA in the meat produced by feeding linseed or fish oil lowered the n-6:n-3 ratio but had little effect on the P:S ratio.


Lipids ◽  
2012 ◽  
Vol 47 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Maísa P. dos Santos ◽  
Suélem A. de França ◽  
José Tiago F. dos Santos ◽  
Samyra L. Buzelle ◽  
Gisele L. Bertolini ◽  
...  

1987 ◽  
Vol 253 (6) ◽  
pp. E664-E669 ◽  
Author(s):  
C. Chascione ◽  
D. H. Elwyn ◽  
M. Davila ◽  
K. M. Gil ◽  
J. Askanazi ◽  
...  

Rates of synthesis, from [14C]glucose, of fatty acids (de novo lipogenesis) and glycerol (triglyceride synthesis) were measured in biopsies of adipose tissue from nutritionally depleted patients given low- or high-carbohydrate intravenous nutrition. Simultaneously, energy expenditure and whole-body lipogenesis were measured by indirect calorimetry. Rates of whole-body lipogenesis were zero on the low-carbohydrate diet and averaged 1.6 g.kg-1.day-1 on the high-carbohydrate diet. In vitro rates of triglyceride synthesis increased 3-fold going from the low to the high intake; rates of fatty acid synthesis increased approximately 80-fold. In vitro, lipogenesis accounted for less than 0.1% of triglyceride synthesis on the low intake and 4% on the high intake. On the high-carbohydrate intake, in vitro rates of triglyceride synthesis accounted for 61% of the rates of unidirectional triglyceride synthesis measured by indirect calorimetry. In vitro rates of lipogenesis accounted for 7% of whole-body lipogenesis. Discrepancies between in vitro rates of fatty acid synthesis from glucose, compared with acetate and citrate, as reported by others, suggest that in depleted patients on hypercaloric high-carbohydrate diets, adipose tissue may account for up to 40% of whole-body lipogenesis.


2010 ◽  
Vol 58 (5) ◽  
pp. 2830-2837 ◽  
Author(s):  
Kayla M. Bridges ◽  
Joseph C. Gigliotti ◽  
Stephanie Altman ◽  
Jacek Jaczynski ◽  
Janet C. Tou

Nutrition ◽  
2009 ◽  
Vol 25 (11-12) ◽  
pp. 1186-1192 ◽  
Author(s):  
Suélem Aparecida de França ◽  
Maísa Pavani dos Santos ◽  
Maria Antonieta Rissato Garófalo ◽  
Luiz Carlos Navegantes ◽  
Isis do Carmo Kettelhut ◽  
...  

Lipids ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Suélem A. de França ◽  
Maísa P. dos Santos ◽  
Franciele Przygodda ◽  
Maria Antonieta R. Garófalo ◽  
Isis C. Kettelhut ◽  
...  

The Auk ◽  
2003 ◽  
Vol 120 (2) ◽  
pp. 337-345 ◽  
Author(s):  
Oliver Egeler ◽  
Dana Seaman ◽  
Tony D. Williams

Abstract Western Sandpipers (Calidris mauri) have been previously shown to undergo seasonal changes in the fatty acid composition of their fat stores, even though they do not show the marked seasonal variation in diet common to many migratory passerines. We investigated the effect of dietary fatty acid composition on the fatty acid composition of adipose tissue in captive Western Sandpipers by feeding birds experimental diets with different fatty acid composition. In addition, we determined the effect of total percentage of fat content of the diet (5 vs. 10%) on fatty acid composition of depot fat. Birds maintained normal body mass (24–27 g) throughout all experimental treatments. Most adipose fatty acids were sensitive to dietary manipulation to some extent. Changes in fatty acid composition of the diet had the largest effect on adipose tissue composition for the essential polyunsaturated fatty acid linoleate (18:2), whereas it had the least effect for the monounsaturated fatty acid oleate (18:1). The saturated fatty acid palmitate (16:0) demonstrated an intermediate capacity to alter fatty acid composition of adipose tissue. Total amount of fat in the diet did not influence the effect of diet on fatty acid deposition. Results of dietary manipulations in this study suggest that diet does explain some of the variation in fatty acid composition observed during migration in Western Sandpipers, but that certain fatty acids can be modulated independently of diet (probably through de novo synthesis, postabsorption modification, or both).


Sign in / Sign up

Export Citation Format

Share Document