Protective effect of neferine on endothelial cell nitric oxide production induced by lysophosphatidylcholine: the role of the DDAH–ADMA pathway

2011 ◽  
Vol 89 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Zhen-Yu Peng ◽  
Sai-Dan Zhang ◽  
Shao Liu ◽  
Bai-Mei He

Neferine, extracted from the seed embryo of Nelumbo nucifera Gaertn., has multiple cardiovascular pharmacological effects. The dimethylarginine dimethylaminohydrolase (DDAH) – asymmetric dimethylarginine (ADMA) system is a novel pathway for modulating nitric oxide (NO) production. The aim of this study was to investigate whether the protective effect of neferine on endothelial NO production was related to the DDAH–ADMA pathway. Human umbilical vein endothelial cells (HUVECs) were first exposed to neferine (0.1, 1.0, or 10.0 μmol/L) for 1 h, and then incubated with lysophosphatidylcholine (LPC; 10 μg/mL) in the presence of neferine for 24 h. The medium was collected for measuring the levels of NO, maleic dialdehyde (MDA), as well as ADMA. The endothelial cells were collected for measuring DDAH activity and the level of reactive oxygen species (ROS). LPC significantly decreased NO concentration and DDAH activity and increased the levels of ADMA, ROS, and MDA. Neferine could partially counteract the changes induced by LPC. These findings suggested that neferine could modulate the DDAH–ADMA pathway via its antioxidant properties, which was involved in its beneficial effect on endothelial NO production.

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3448
Author(s):  
Byung Hyuk Han ◽  
Chun Ho Song ◽  
Jung Joo Yoon ◽  
Hye Yoom Kim ◽  
Chang Seob Seo ◽  
...  

Securiniga suffruticosa is known as a drug that has the effect of improving the blood circulation and relaxing muscles and tendons, thereby protects and strengthen kidney and spleen. Therefore, in this study, treatment of Securiniga suffruticosa showed protective effect of inhibiting the vascular inflammation in human umbilical vein endothelial cells (HUVECs) by inducing nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) coupling pathway. In this study, Securiniga suffruticosa suppressed TNF-α (Tumor necrosis factor–α) induced protein and mRNA levels of cell adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and Interleukin-6 (IL-6). Pretreatment of HUVEC with Securiniga suffruticosa decreased the adhesion of HL-60 cells to Ox-LDL (Oxidized Low-Density-Lipoprotein)-induced HUVEC. Moreover, Securiniga suffruticosa inhibited TNF-α induced intracellular reactive oxygen species (ROS) production. Securiniga suffruticosa also inhibited phosphorylation of IκB-α in cytoplasm and translocation of NF-κB (Nuclear factor-kappa B) p65 to the nucleus. Securiniga suffruticosa increased NO production, as well increased the phosphorylation of eNOS and Akt (protein kinase B) which are related with NO production. In addition, Securiniga suffruticosa increased the protein expression of GTPCH (Guanosine triphosphate cyclohydrolase Ⅰ) and the production of BH4 in HUVEC which are related with eNOS coupling pathway. In conclusion, Securiniga suffruticosa has a protective effect against vascular inflammation and can be a potential therapeutic agent for early atherosclerosis.


2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


2007 ◽  
Vol 293 (1) ◽  
pp. C458-C467 ◽  
Author(s):  
Jian-Zhong Sheng ◽  
Andrew P. Braun

The contribution of small-conductance (SKCa) and intermediate-conductance Ca2+-activated K+ (IKCa) channels to the generation of nitric oxide (NO) by Ca2+-mobilizing stimuli was investigated in human umbilical vein endothelial cells (HUVECs) by combining single-cell microfluorimetry with perforated patch-clamp recordings to monitor agonist-evoked NO synthesis, cytosolic Ca2+ transients, and membrane hyperpolarization in real time. ATP or histamine evoked reproducible elevations in NO synthesis and cytosolic Ca2+, as judged by 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) and fluo-3 fluorescence, respectively, that were tightly associated with membrane hyperpolarizations. Whereas evoked NO synthesis was unaffected by either tetraethylammonium (10 mmol/l) or BaCl2 (50 μmol/l) + ouabain (100 μmol/l), depleting intracellular Ca2+ stores by thapsigargin or removing external Ca2+ inhibited NO production, as did exposure to high (80 mmol/l) external KCl. Importantly, apamin and charybdotoxin (ChTx)/ triarylmethane (TRAM)-34, selective blockers SKCa and IKCa channels, respectively, abolished both stimulated NO synthesis and membrane hyperpolarization and decreased evoked Ca2+ transients. Apamin and TRAM-34 also inhibited an agonist-induced outwardly rectifying current characteristic of SKCa and IKCa channels. Under voltage-clamp control, we further observed that the magnitude of agonist-induced NO production varied directly with the degree of membrane hyperpolarization. Mechanistically, our data indicate that SKCa and IKCa channel-mediated hyperpolarization represents a critical early event in agonist-evoked NO production by regulating the influx of Ca2+ responsible for endothelial NO synthase activation. Moreover, it appears that the primary role of agonist-induced release of intracellular Ca2+ stores is to trigger the opening of both KCa channels along with Ca2+ entry channels at the plasma membrane. Finally, the observed inhibition of stimulated NO synthesis by apamin and ChTx/TRAM-34 demonstrates that SKCa and IKCa channels are essential for NO-mediated vasorelaxation.


1998 ◽  
Vol 274 (3) ◽  
pp. H1054-H1058 ◽  
Author(s):  
John D. Hood ◽  
Cynthia J. Meininger ◽  
Marina Ziche ◽  
Harris J. Granger

Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that potently stimulates vasodilation, microvascular hyperpermeability, and angiogenesis. Nitric oxide (NO) is also reported to modulate vascular tone, permeability, and capillary growth. Therefore, we hypothesized that VEGF might regulate endothelial production of NO. The production of nitrogen oxides by human umbilical vein endothelial cells (HUVECs) was measured after 1, 12, 24, and 48 h of incubation with VEGF. VEGF treatment resulted in both an acute (1 h) and chronic (>24 h) stimulation of NO production. Furthermore, Western and Northern blotting revealed a VEGF-elicited, dose-dependent increase in the cellular content of endothelial cell nitric oxide synthase (ecNOS) message and protein that may account for the chronic upregulation of NO production elicited by VEGF. Finally, endothelial cells pretreated with VEGF for 24 h and subsequently exposed to A-23187 for 1 h produced NO at approximately twice the rate of cells that were not pretreated with VEGF. We conclude that VEGF upregulates ecNOS enzyme and elicits a biphasic stimulation of endothelial NO production.


2015 ◽  
Vol 54 (3) ◽  
pp. 227-231 ◽  
Author(s):  
Kuan-Hao Tsui ◽  
Hsin-Yang Li ◽  
Jiin-Tsuey Cheng ◽  
Yen-Jen Sung ◽  
Ming-Shyen Yen ◽  
...  

2016 ◽  
Vol 71 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Mi Hwa Park ◽  
Jae-Won Ju ◽  
Mihyang Kim ◽  
Ji-Sook Han

AbstractEndothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose–induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02–0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Lakeisha C Tillery ◽  
Evangeline D Motley-Johnson

Protease-activated receptors (PARs) have been shown to regulate endothelial nitric oxide synthase (eNOS) through the activation of specific sites on the enzyme. It has been established that phosphorylation of eNOS-Ser-1177 leads to the production of the potent vasodilator nitric oxide (NO), and is associated with PAR-2 activation; while phosphorylation of eNOS-Thr-495 decreases NO production, and is coupled to PAR-1 activation. In this study, we demonstrate a differential regulation of the eNOS/NO pathway by the PARs using primary adult human coronary artery endothelial cells (HCAEC). Thrombin and the PAR-1 activating peptide, TFLLR, which are known to phosphorylate eNOS-Thr-495 in bovine and human umbilical vein endothelial cells, phosphorylated eNOS-Ser-1177 in HCAECs, and increased NO production. The PAR-1 responses were blocked using SCH-79797, a PAR-1 inhibitor, and L-NAME was used to inhibit NO production. A PAR-2 specific ligand, SLIGRL, which has been shown to phosphorylate eNOS-Ser-1177 in bovine and human umbilical vein endothelial cells, primarily regulated eNOS-Thr-495 phosphorylation and suppressed NO production in the HCAECs. PAR-3, known for its non-signaling potential, was activated by TFRGAP, a PAR-3 mimicking peptide, and only induced phosphorylation of eNOS-Thr-495 with no effect on NO production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was calcium-dependent using the calcium chelator, BAPTA, and eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632. These data suggest a vascular bed specific differential coupling of PARs to the signaling pathways that regulate eNOS and NO production that may be responsible for the modulation of endothelial function associated with cardiovascular disease.


1996 ◽  
Vol 270 (2) ◽  
pp. C546-C551 ◽  
Author(s):  
K. J. Gooch ◽  
J. A. Frangos

The objective of this study was to evaluate the role transmembrane potential plays in flow-induced nitric oxide (NO) production in endothelial cells (EC). NO production was monitored by measuring intracellular guanosine 3',5'-cyclic monophosphate (cGMP) and extracellular nitrite plus nitrate (NOx). Primary human umbilical vein endothelial cells (HUVEC) were exposed to laminar flow (22 dyn/cm2) of medium with 5.4 mM KCl (control medium) with or without 3 mM tetraethylammonium chloride (TEA) or 90 mM KCl (K(+)-rich medium). Bradykinin (BK) was added to time-matched stationary cultures to give a final concentration of 5 nM. With control medium, 30 s, 2 min, and 3 h of treatment with flow or 2 min of treatment with BK resulted in an approximately threefold increase in cGMP over stationary cultures. Depolarization with KCl or TEA did not influence cGMP production in flow-treated or stationary cultures. Flow of either control or potassium-rich medium resulted in an approximately 10-fold increase in average NOx production rate over 3 h compared with stationary cultures. Taken together these data indicate that neither membrane hyperpolarization nor normal membrane potential is necessary for flow- or BK-induced NO production by HUVEC.


Sign in / Sign up

Export Citation Format

Share Document