Effects of prolonged low frequency stimulation on skeletal muscle sarcoplasmic reticulum

1995 ◽  
Vol 73 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
E. R. Chin ◽  
H. J Green ◽  
F. Grange ◽  
J. Dossett-Mercer ◽  
P. J. O'Brien

The role of prolonged electrical stimulation on sarcoplasmic reticulum (SR) Ca2+sequestration measured in vitro and muscle energy status in fast white and red skeletal muscle was investigated. Fatigue was induced by 90 min intermittent 10-Hz stimulation of rat gastrocnemius muscle, which led to reductions (p < 0.05) in ATP, creatine phosphate, and glycogen of 16, 55, and 49%, respectively, compared with non-stimulated muscle. Stimulation also resulted in increases (p < 0.05) in muscle lactate, creatine, Pi, total ADP, total AMP, IMP, and inosine. Calculated free ADP (ADPf) and free AMP (AMPf) were elevated 3- and 15-fold, respectively. No differences were found in the metabolic response between tissues obtained from the white (WG) and red (RG) regions of the gastrocnemius. No significant reductions in SR Ca2+ATPase activity were observed in homogenate (HOM) or a crude SR fraction (CM) from WG or RG muscle following exercise. Maximum Ca2+uptake in HOM and CM preparations was similar in control (C) and stimulated (St) muscles. However, Ca2+uptake at 400 nM free Ca2+was significantly reduced in CM from RG (0.108 ± 0.04 to 0.076 ± 0.02 μmol∙mg−1protein∙min−1in RG–C and RG–St, respectively). Collectively, these data suggest that reductions in muscle energy status are dissociated from changes in SR Ca2+ATPase activity in vitro but are related to Ca2+uptake at physiological free [Ca2+] in fractionated SR from highly oxidative muscle. Dissociation of SR Ca2+ATPase activity from Ca2+uptake may reflect differences in the mechanisms evaluated by these techniques.Key words: sarcoplasmic reticulum, contractile activity, Ca2+sequestration, energy status, red and white gastrocnemius.

2007 ◽  
Vol 2 (2) ◽  
pp. 111-127 ◽  
Author(s):  
Jens Bangsbo ◽  
Fedon Marcello Iaia ◽  
Peter Krustrup

The physical demands in soccer have been studied intensively, and the aim of the present review is to provide an overview of metabolic changes during a game and their relation to the development of fatigue. Heart-rate and body-temperature measurements suggest that for elite soccer players the average oxygen uptake during a match is around 70% of maximum oxygen uptake (VO2 max). A top-class player has 150 to 250 brief intense actions during a game, indicating that the rates of creatine-phosphate (CP) utilization and glycolysis are frequently high during a game, which is supported by findings of reduced muscle CP levels and several-fold increases in blood and muscle lactate concentrations. Likewise, muscle pH is lowered and muscle inosine monophosphate (IMP) elevated during a soccer game. Fatigue appears to occur temporarily during a game, but it is not likely to be caused by elevated muscle lactate, lowered muscle pH, or change in muscle-energy status. It is unclear what causes the transient reduced ability of players to perform maximally. Muscle glycogen is reduced by 40% to 90% during a game and is probably the most important substrate for energy production, and fatigue toward the end of a game might be related to depletion of glycogen in some muscle fibers. Blood glucose and catecholamines are elevated and insulin lowered during a game. The blood free-fatty-acid levels increase progressively during a game, probably reflecting an increasing fat oxidation compensating for the lowering of muscle glycogen. Thus, elite soccer players have high aerobic requirements throughout a game and extensive anaerobic demands during periods of a match leading to major metabolic changes, which might contribute to the observed development of fatigue during and toward the end of a game.


1991 ◽  
Vol 274 (2) ◽  
pp. 565-573 ◽  
Author(s):  
F Cardellach ◽  
T F Taraschi ◽  
J S Ellingson ◽  
C D Stubbs ◽  
E Rubin ◽  
...  

The effect of long-term ethanol intake on the structural and functional characteristics of rat skeletal-muscle mitochondria and sarcoplasmic reticulum was investigated. Functionally, skeletal-muscle mitochondria were characterized by a high respiratory control index and ADP/O ratio and a high State-3 respiration rate with different substrates. These parameters were not significantly different in preparations from control and ethanol-fed rats, except for a small increase in the rate of oxidation of alpha-oxoglutarate/malate in the latter. In submitochondrial particles from the two groups of animals there was no significant difference in cytochrome content, ATPase activity or the activity of respiratory-chain complexes. Mitochondrial membranes from untreated and ethanol-fed rats showed no difference in the baseline e.s.r. order parameter, and both preparations were equally sensitive to disordering by ethanol in vitro. Similarly, sarcoplasmic-reticulum preparations were not significantly affected by long-term ethanol feeding with respect to Ca2(+)-ATPase activity or in baseline order parameter and susceptibility to membrane disordering by ethanol in vitro. These membranes were also equally sensitive to degradation by exogenous phospholipase A2. Ethanol feeding did not alter the class composition of mitochondrial or sarcoplasmic-reticulum membrane phospholipids, nor the acyl composition of individual phospholipid classes. Specifically, the changes in acyl composition that characteristically occur in liver microsomal phosphatidylinositol and liver mitochondrial cardiolipin were not observed in the corresponding phospholipids from skeletal-muscle membranes. In experiments where membrane preparations from liver and skeletal muscle from the same ethanol-fed animals were compared, the liver membranes developed membrane tolerance, with the muscle membranes retaining normal sensitivity to disordering effects by ethanol. It is concluded that: (a) different tissues from the same animals differ in their susceptibility to ethanol; (b) the tissue-specific lack of development of membrane tolerance correlates with a lack of chemical changes in the phospholipids and with a retention of normal function of mitochondria and sarcoplasmic reticulum; (c) effects of chronic ethanol intake on muscle function are not due to a defect in the mitochondrial energy supply.


2006 ◽  
Vol 291 (3) ◽  
pp. E566-E573 ◽  
Author(s):  
Robert S. Lee-Young ◽  
Matthew J. Palmer ◽  
Kelly C. Linden ◽  
Kieran LePlastrier ◽  
Benedict J. Canny ◽  
...  

There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKα2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKα2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 ± 1% V̇o2 peak. In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly ( P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKα2 activity, AMPKα2 Thr172 phosphorylation and acetyl-CoA Ser222 phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.


1994 ◽  
Vol 266 (1) ◽  
pp. H68-H78 ◽  
Author(s):  
C. R. Cory ◽  
R. W. Grange ◽  
M. E. Houston

The loss of load-sensitive relaxation observed in the pressure-overloaded heart may reflect a strategy of slowed cytosolic Ca2+ uptake to yield a prolongation of the active state of the muscle and a decrease in cellular energy expenditure. A decrease in the potential of the sarcoplasmic reticulum (SR) to resequester cytosolic Ca2+ during diastole could contribute to this attenuated load sensitivity. To test this hypothesis, both in vitro mechanical function of anterior papillary muscles and the SR Ca2+ sequestration potential of female guinea pig left ventricle were compared in cardiac hypertrophy (Hyp) and sham-operated (Sham) groups. Twenty-one days of pressure overload induced by coarctation of the suprarenal, subdiaphragmatic aorta resulted in a 36% increase in left ventricular mass in the Hyp. Peak isometric tension, the rate of isometric tension development, and the maximal rates of isometric and isotonic relaxation were significantly reduced in Hyp. Load-sensitive relaxation were significantly reduced in Hyp. Load-sensitive relaxation quantified by the ratio of a rapid loading to unloading force step in isotonically contracting papillary muscle was reduced 50% in Hyp muscles. Maximum activity of SR Ca(2+)-adenosinetriphosphatase (ATPase) measured under optimal conditions (37 degrees C; saturating Ca2+) was unaltered, but at low free Ca2+ concentrations (0.65 microM), it was decreased by 43% of the Sham response. Bivariate regression analysis revealed a significant (r = 0.84; P = 0.009) relationship between the decrease in SR Ca(2+)-ATPase activity and the loss of load-sensitive relaxation after aortic coarctation. Stimulation of the SR Ca(2+)-ATPase by the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase resulted in a 2.6-fold increase for Sham but only a 1.6-fold increase for Hyp. Semiquantitative Western blot radioimmunoassays revealed that the changes in SR Ca(2+)-ATPase activity were not due to decreases in the content of the Ca(2+)-ATPase protein or phospholamban. Our data directly implicate a role for decreased SR function in attenuated load sensitivity. A purposeful downregulation of SR Ca2+ uptake likely results from a qualitative rather than a quantitative change in the ATPase and possibly one of its key regulators, phospholamban.


1994 ◽  
Vol 267 (2) ◽  
pp. C357-C366 ◽  
Author(s):  
P. Korge ◽  
K. B. Campbell

Ca2+ pump function of skeletal muscle sarcoplasmic reticulum (SR) vesicles was measured by monitoring Ca2+ uptake and efflux with a Ca(2+)-sensitive minielectrode and adenosinetriphosphatase (ATPase) activity of the same preparation under the same conditions. The efficiency of Ca2+ transport into SR vesicles, defined by the amount of Ca2+ transported per ATP hydrolyzed (coupling ratio), varied significantly depending on assay conditions. Coupling ratio increased in parallel with increase in precipitating anion concentration, which is supposed to decrease accumulation of free Ca2+ inside vesicles and its subsequent efflux. Membrane-bound creatine kinase-creatine phosphate (CK-CP) system, acting as a ADP sensor and local ATP regenerator, significantly improved Ca2+ pump function when the pump worked with low efficiency (coupling ratio < 1). The effect of CK-CP system on Ca2+ pump function was also dependent on extravesicular Ca2+ concentration ([Ca2+]o), the effect being most significant at high initial [Ca2+]o. Under conditions in which SR vesicles were allowed to decrease [Ca2+]o, as occurs also during muscle relaxation, plateau values of Ca(2+)-ATPase activity were reached at significantly higher [Ca2+]o (54 +/- 5.7, n = 6), compared with leaky vesicles or the condition in which [Ca2+]o was maintained. By preventing local accumulation of ADP, generated in ATPase reactions, CK-CP system also inhibited Ca2+ efflux under conditions in which this efflux was stimulated by the increase of free Ca2+ inside vesicles. This effect was at least partially responsible for the CK-CP-supported increase in Ca2+ uptake and coupling ratios that were more expressed at low precipitating anion concentration. We hypothesize that local ATP regeneration by CK-CP system is one mechanism the cell can use to improve Ca2+ uptake by SR in emergency conditions, where excessive increase in cytoplasmic [Ca2+] may have deleterious effects.


1996 ◽  
Vol 199 (11) ◽  
pp. 2359-2367
Author(s):  
C Brösamle ◽  
D P Kuffler

The vertebrate neuromuscular junction is a highly specialized structure containing many unique proteins and an underlying cluster of nuclei. Part of this specialization results from the expression of the genes for these proteins in nuclei clustered in the postsynaptic region. Contractile activity, as well as molecules located in the synaptic extracellular matrix (ECM), have been implicated in the induction of gene expression in these clustered nuclei. The present experiments were aimed at examining whether the presence of the synaptic ECM and presynaptic cells play a role in maintaining the clustering of the nuclei. We describe the normal distribution of nuclei clustered in the synaptic region of intact adult frog, Rana pipiens, skeletal muscle fibers and show that innervation is not required to maintain the nuclear clusters. Even after long-term (4 week) denervation, the clusters remain unchanged. Dissociation of the muscle fibers with proteases that remove ECM, Schwann cells and other satellite cells from the synaptic sites is followed by a rapid (within approximately 1.5 h) and almost complete dispersal of the clustered nuclei. Attempts to recluster the postsynaptic nuclei by the application of ECM components to muscle fibers in vitro were not successful. We propose that a factor or factors, localized in the synaptic ECM as a result of synapse formation and acting via the transmembrane or cytoplasmic domains of their respective receptors, induces the formation of a specialized cytoskeleton in the postsynaptic region that is capable of pulling in or 'trapping' nuclei. The removal of these factors from the ECM by proteases brings about the disorganization of the cytoskeleton and the freeing of the 'trapped' nuclei.


Sign in / Sign up

Export Citation Format

Share Document