α1-Antitrypsin polymorphism and systematics of eastern North American wolves

2002 ◽  
Vol 80 (5) ◽  
pp. 961-963 ◽  
Author(s):  
L David Mech ◽  
Nicholas E Federoff

We used data on the polymorphic status of α1-antitrypsin (α1AT) to study the relationship of Minnesota wolves to the gray wolf (Canis lupus), which was thought to have evolved in Eurasia, and to red wolves (Canis rufus) and coyotes (Canis latrans), which putatively evolved in North America. Recent evidence had indicated that Minnesota wolves might be more closely related to red wolves and coyotes. Samples from wild-caught Minnesota wolves and from captive wolves, at least some of which originated in Alaska and western Canada, were similarly polymorphic for α1AT, whereas coyote and red wolf samples were all monomorphic. Our findings, in conjunction with earlier results, are consistent with the Minnesota wolf being a gray wolf of Eurasian origin or possibly a hybrid between the gray wolf of Eurasian origin and the proposed North American wolf.

2003 ◽  
Vol 81 (5) ◽  
pp. 936-940 ◽  
Author(s):  
P J Wilson ◽  
S Grewal ◽  
T McFadden ◽  
R C Chambers ◽  
B N White

We analysed the mitochondrial DNA (mtDNA) from two historical samples of eastern North American wolves: the last wolf reported to have been killed in northern New York State (ca. 1890s) and a wolf killed in Maine in the 1880s. These wolves represent eastern wolves, presently classified as the gray wolf (Canis lupus) subspecies Canis lupus lycaon, which were present well before the expansion of western coyotes (Canis latrans) into these regions. We show the absence of gray wolf mtDNA in these wolves. They both contain New World mtDNA, supporting previous findings of a North American evolution of the eastern timber wolf (originally classified as Canis lycaon) and red wolf (Canis rufus) independently of the gray wolf, which originated in Eurasia. The presence of a second wolf species in North America has important implications for the conservation and management of wolves. In the upper Great Lakes region, wolves of both species may exist in sympatry or interbreed with each other, which impacts the accuracy of estimates of numbers of wolves of each species within this geographic region. Furthermore, the historical distribution of the eastern timber wolf (C. lycaon), as revealed by these skin samples, has important implications for the reintroduction of wolves into the northeastern U.S. states, such as New York and Maine.


2000 ◽  
Vol 78 (12) ◽  
pp. 2156-2166 ◽  
Author(s):  
Paul J Wilson ◽  
Sonya Grewal ◽  
Ian D Lawford ◽  
Jennifer NM Heal ◽  
Angela G Granacki ◽  
...  

The origin and taxonomy of the red wolf (Canis rufus) have been the subject of considerable debate and it has been suggested that this taxon was recently formed as a result of hybridization between the coyote and gray wolf. Like the red wolf, the eastern Canadian wolf has been characterized as a small "deer-eating" wolf that hybridizes with coyotes (Canis latrans). While studying the population of eastern Canadian wolves in Algonquin Provincial Park we recognized similarities to the red wolf, based on DNA profiles at 8 microsatellite loci. We examined whether this relationship was due to similar levels of introgressed coyote genetic material by comparing the microsatellite alleles with those of other North American populations of wolves and coyotes. These analyses indicated that it was not coyote genetic material which led to the close genetic affinity between red wolves and eastern Canadian wolves. We then examined the control region of the mitochondrial DNA (mtDNA) and confirmed the presence of coyote sequences in both. However, we also found sequences in both that diverged by 150 000 - 300 000 years from sequences found in coyotes. None of the red wolves or eastern Canadian wolf samples from the 1960s contained gray wolf (Canis lupus) mtDNA sequences. The data are not consistent with the hypothesis that the eastern Canadian wolf is a subspecies of gray wolf as it is presently designated. We suggest that both the red wolf and the eastern Canadian wolf evolved in North America sharing a common lineage with the coyote until 150 000 - 300 000 years ago. We propose that it retain its original species designation, Canis lycaon.


2012 ◽  
Vol 77 (1) ◽  
pp. 1-67 ◽  
Author(s):  
Steven M. Chambers ◽  
Steven R. Fain ◽  
Bud Fazio ◽  
Michael Amaral

Abstract The available scientific literature was reviewed to assess the taxonomic standing of North American wolves, including subspecies of the gray wolf, Canis lupus. The recent scientific proposal that the eastern wolf, C. l. lycaon, is not a subspecies of gray wolf, but a full species, Canis lycaon, is well-supported by both morphological and genetic data. This species' range extends westward to Minnesota, and it hybridizes with gray wolves where the two species are in contact in eastern Canada and the Upper Peninsula of Michigan, Wisconsin, and Minnesota. Genetic data support a close relationship between eastern wolf and red wolf Canis rufus, but do not support the proposal that they are the same species; it is more likely that they evolved independently from different lineages of a common ancestor with coyotes. The genetic distinctiveness of the Mexican wolf Canis lupus baileyi supports its recognition as a subspecies. The available genetic and morphometric data do not provide clear support for the recognition of the Arctic wolf Canis lupus arctos, but the available genetic data are almost entirely limited to one group of genetic markers (microsatellite DNA) and are not definitive on this question. Recognition of the northern timber wolf Canis lupus occidentalis and the plains wolf Canis lupus nubilus as subspecies is supported by morphological data and extensive studies of microsatellite DNA variation where both subspecies are in contact in Canada. The wolves of coastal areas in southeastern Alaska and British Columbia should be assigned to C. lupus nubilus. There is scientific support for the taxa recognized here, but delineation of exact geographic boundaries presents challenges. Rather than sharp boundaries between taxa, boundaries should generally be thought of as intergrade zones of variable width.


2021 ◽  
Author(s):  
Lianne Wing Yan Ho

Vanitas Obsolescentum is a comment on the obsolescence of contemporary commodity. It draws from prominent theories of obsolescence and appropriates 17th century Dutch Vanitas paintings. This paper begins by addressing themes relevant to the conceptual development of the series, including theories of obsolescence as presented by Packard, Papanek and Slade, the relationship of Dutch Golden Age society to contemporary North American society, Dutch Vanitas paintings, and appropriation of the Vanitas genre in contemporary art history and within this series. It provides a rationale for the use of holography as medium to express concepts of transience and hyperreality. This paper concludes with a discussion of the specifics of Vanitas Obsolescentum, including the symbolism and meaning of each piece within the series.


1960 ◽  
Vol 92 (1) ◽  
pp. 1-10 ◽  
Author(s):  
R. Pickford

In Western Canada, Melanoplus bilituratus (Wlk.) may hatch from early May to mid-July, depending on seasonal conditions. Little information is available on the relationship of time of hatching to population growth except that grasshoppers emerging too early in the spring may be destroyed by adverse weather that often occurs at this time (Shotwell, 1941). Also, it has beenassumed that grasshoppers hatching late in the summer mature too late to contribute much to general population growth.


2003 ◽  
Vol 81 (6) ◽  
pp. 985-993 ◽  
Author(s):  
T Adam Switalski

Coyotes (Canis latrans) in Yellowstone National Park (YNP) have lived in the absence of wolves (Canis lupus) for over 60 years. I examined whether wolf reintroduction in 1995 and 1996 in YNP influenced coyote vigilance and foraging ecology. From December 1997 to July 2000, my co-workers and I collected 1708 h of coyote activity budgets. Once wolves became established in the Park, they once again provided a continuous source of carrion in the Lamar Valley and we found that coyotes began feeding on carcasses throughout the year. Although we documented that wolves killed coyotes, it also became clear that surviving coyotes quickly adjusted their behaviors when wolves were present. When coyotes were near wolves or in areas of high wolf use, they fed on carcasses much more; however, they increased the amount of time spent in vigilance activities and decreased rest. There appears to be a trade-off in which wolf kills provide a quick source of food that is energetically advantageous to coyotes; however, attendant costs included increased vigilance, decreased rest, and a higher risk of being killed. Changes in the behavior of coyotes in response to the reintroduction of this large carnivore may ultimately have wide-ranging cascading effects throughout the ecosystem.


1993 ◽  
Vol 125 (S168) ◽  
pp. 1-193 ◽  
Author(s):  
Valerie M. Behan-Pelletier

AbstractThe oribatid family Eremaeidae is represented in North America by two genera, Eremaeus and Eueremaeus, both widely distributed throughout the Palaearctic and Nearctic regions. In North America species in both genera are found in moist to arid habitats from New Mexico to the High Arctic. Reproduction is sexual, and both immatures and adults feed mainly on fungi.Revised diagnoses are presented for the Eremaeidae and genera Eremaeus and Eueremaeus. Eighteen species of Eremaeus, of which 14 are newly proposed, and 24 species of Eueremaeus, of which 15 are newly proposed, are recognized. Identification keys are provided for the world genera of Eremaeidae, and for adults of Eremaeus and Eueremaeus of North America. All but one North American species of these genera are described, and their geographical distributions mapped.North American Eremaeus species include E. appalachicus sp. no v., E. boreomontanus sp. nov., E. brevitarsus (Ewing), E. californiensis sp. nov., E. gracilis sp. nov., E. grandis Hammer, E. kananaskis sp. nov., E. kevani sp. nov., E. megistos sp. nov., E. monticolus sp. nov., E. nortoni sp. nov., E. occidentalis sp. nov., E. oresbios sp. nov., E. plumosus Woolley, E. porosus sp. nov., E. salish sp. nov., E. translamellatus Hammer, and E. walteri sp. nov. The immatures of four of these, E. kananaskis, E. occidentalis, E. oresbios, and E. translamellatus, are described.North American Eueremaeus include Eu. acostulatus sp. nov., Eu. aridulus sp. nov., Eu. columbianus (Berlese), Eu. foveolatus (Hammer), Eu. marshalli sp. nov., Eu. masinasin sp. nov., Eu. michaeli sp. nov., Eu. nahani sp. nov., Eu. nemoralis sp. nov., Eu. proximus (Berlese) comb, nov., Eu. woolleyi (Higgins) comb, nov., Eu. yukonensis sp. nov., and three informal species groups with the following included species in North America: (1) Eu. trionus group—Eu. trionus (Higgins) comb, nov., (2) Eu. stiktos group—Eu. carinatus sp. nov., Eu. higginsi sp. nov., Eu. stiktos (Higgins) comb, nov., Eu. tetrosus (Higgins) comb, nov., (3) Eu. chiatous group—Eu. alvordensis sp. nov., Eu. aysineep sp. nov., Eu. chiatous (Higgins) comb, nov., Eu. danos sp. nov., Eu. lindquisti sp. nov., Eu. magniporosus (Wallwork) comb, nov., and Eu. osoyoosensis sp. nov. The immatures of nine of these, Eu. masinasin, Eu. nahani, Eu. carinatus, Eu. higginsi, Eu. columbianus, Eu. proximus, Eu. woolleyi, Eu. stiktos, and Eu. tetrosus, are described. Kartoeremaeus reevesi Higgins and Eremaeus politus Banks are considered junior subjective synonyms of Eueremaeus columbianus (Berlese).A cladistic analysis of the genera comprising Eremaeidae: Eremaeus, Tricheremaeus, Eueremaeus (and included species groups), Proteremaeus, Carinabella, and Asperemaeus, indicates that Eremaeus is the sister taxon of Carinabella, and that Eueremaeus is the sister taxon of Proteremaeus. Tricheremaeus is the sister taxon of Eremaeus + Carinabella, and Asperemaeus is the sister taxon of Eueremaeus + Proteremaeus. The relationship of the Eremaeidae to the Megeremaeidae and Zetorchestidae is presented. Finally, I discuss the ecology and distribution of North American species of Eremaeidae.


1959 ◽  
Vol 91 (S10) ◽  
pp. 5-338 ◽  
Author(s):  
Margaret Rae MacKay

AbstractThe late-instar larvae of about 185 species of the North American Olethreutidae are described and most of them illustrated. Included in these are many pests, such as Grapholitha molesta, Carpocapsa pomonella, and Spilonota ocellana on fruit trees, Paralobesia viteana on grapes, Ancylis comptana fragariae on strawberries, Laspeyresia nigricana in pea pods, Laspeyresia caryana in hickory and pecan nuts, Taniva albolineana in spruce needles, and species of Rhyacionia and Petrova on pines. Keys to species groups and to individual species are provided. Of the diagnostic and specialized characters listed, the most useful include the setae, the spinneret, and the shape of the larva, especially of its head and anal shield. The main characters are given for the postulated ancestral larva and for the highly developed larva. Most of the species groups are arranged according to the suggested phylogenetic relationship of their larvae, emphasizing the necessity of a revision of the family. Larvae of some genera previously difficult to classify, such as Pseudogalleria and Hystricophora, indicate the relationship of those genera to other groups; conversely, lack of relationship is clearly shown in other instances, e.g., between Carpocapsa pomonella and Carpocapsa saltitans, and between the two species Epiblema culminana and E. suffusana and other members of the genus Epiblema.


2018 ◽  
Vol 99 (5) ◽  
pp. 1033-1041
Author(s):  
Eric M Gese ◽  
William T Waddell ◽  
Patricia A Terletzky ◽  
Chris F Lucash ◽  
Scott R McLellan ◽  
...  

Abstract Cross-fostering offspring with nonbiological parents could prove useful to augment populations of endangered carnivores. We used cross-fostering to augment captive-born and wild-born litters for the endangered red wolf (Canis rufus). Between 1987 and 2016, 23 cross-fostering events occurred involving captive-born pups fostered into captive litters (n = 8 events) and captive-born pups fostered into wild recipient litters (n = 15 events). Percentage of pups surviving 3 and 12 months was 91.7% for captive-born pups fostered into captive recipient litters. For pups fostered into wild litters, percentage of pups surviving 5 months was > 94% among fostered pups (pups fostered into a wild red wolf litter or replaced a hybrid litter), pups in recipient litters (wild-born litters receiving fostered pups), and pups in control litters (wild-born litters not in a fostering event) when using pups with known fates. Including pups with unknown fates as deaths, percentage of pups surviving 5 months was > 54% among fostered pups, pups in recipient litters, and pups in control litters. Among wild litters, percentage of pups surviving 12 months was > 82% among fostered pups, pups in recipient litters, and pups in control litters when using pups with known fates. Including pups with unknown fates as deaths, percentage of pups surviving 12 months was > 48% among fostered pups, pups in recipient litters, and pups in control litters. Although survival to 12 months was similar among the groups, average life span was different with pups in control litters living 3.3 years, pups in recipient litters living 4.6 years, and fostered pups living 5.6 years. Of fostered pups surviving > 12 months in the wild, 9 animals whelped or sired 26 litters. Cross-fostering was successful at augmenting litter size for red wolves without any deleterious effects on recipient litters, illustrating fostering as a tool for increasing populations of endangered carnivores.


Sign in / Sign up

Export Citation Format

Share Document