Effect of thyroxine on the ultrastructure of the hypophyseal proximal pars distalis in Tilapia zillii

1975 ◽  
Vol 53 (6) ◽  
pp. 686-690 ◽  
Author(s):  
John F. Leatherland ◽  
Mohamed Hyder

The effects of exogenous L-thyroxine on the fine structure of the proximal pars distalis cells were examined in Tilapia zillii. In thyroxine-treated animals the thyrotrophic cells appeared marginally smaller and less active whereas the somatotrophs appeared markedly more active, with increased endoplasmic reticulum, larger mitochondria, and more granule release when compared with the same cell types in control animals. The gonadotrophs were similar in appearance in both thyroxine-treated and control groups.The possible interrelated activity of the somatotrophs and the TSH–thyroid axis is discussed.

1958 ◽  
Vol 4 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Jerry Steven Trier

The fine structure of the parathyroid of the macaque is described, and is correlated with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron micrographs. The chief cells contain within their cytoplasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic reticulum of the ergastoplasmic or granular type. Oxyphil cells are characterized by juxtanuclear bodies and by numerous mitochondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described.


1958 ◽  
Vol 4 (5) ◽  
pp. 583-592 ◽  
Author(s):  
Elizabeth D. Hay

Regenerating forelimbs of larval salamanders, Amblystoma punctatum, were fixed in OsO4 at various intervals after amputation and were sectioned for study with the electron microscope. The dedifferentiated cells comprising the early blastema were found to have a fine structure similar to that of other undifferentiated cells and to have lost all of the identifying morphological features of their tissues of origin. The cytoplasm of such cells is characterized by numerous free ribonucleoprotein granules and a discontinuous vesicular endoplasmic reticulum. The cells have more abundant cytoplasm and are in closer contact with each other than was previously realized. The layer of condensed ground substance investing most differentiated cell types is lacking. After a period of rapid cell division, the morphology of the blastema cell changes. Cytoplasm is now sparse and contains a high concentration of free ribonucleoprotein granules, but little endoplasmic reticulum. The differentiating cartilage cell, however, develops an extensive, highly organized endoplasmic reticulum and the Golgi apparatus also appears to become more highly differentiated and more extensive at this time. Small vesicles appear throughout the cytoplasm at the time the new cisternae originate and may contribute to their formation. These and other changes in the cytoplasmic organelles are discussed.


1973 ◽  
Vol 74 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Erik Dahl ◽  
Kjell J. Tveter ◽  
Åsmund Kjaerheim

ABSTRACT The present paper describes the fine structure of the accessory sex organs of the male rat as seen after stimulation with testosterone administered to castrated adults as well as infantile rats. Electron microscopic examination of the testosterone-treated castrated animals revealed an almost complete regeneration of the epithelial cells in all the organs, with a well developed Golgi area, a well developed rough endoplasmic reticulum and an increased number of secretory granules. The results obtained are discussed in relation to the biochemical data, and it is concluded that the various cell types of the accessory genital complex react in a fundamentally similar manner to the administration of testosterone.


Author(s):  
Brendan Clifford

An ultrastructural investigation of the Malpighian tubules of the fourth instar larva of Culex pipiens was undertaken as part of a continuing study of the fine structure of transport epithelia.Each of the five Malpighian tubules was found to be morphologically identical and regionally undifferentiated. Two distinct cell types, the primary and stellate, were found intermingled along the length of each tubule. The ultrastructure of the stellate cell was previously described in the Malpighian tubule of the blowfly, Calliphora erythrocephala by Berridge and Oschman.The basal plasma membrane of the primary cell is extremely irregular, giving rise to a complex interconnecting network of basal channels. The compartments of cytoplasm entrapped within this system of basal infoldings contain mitochondria, free ribosomes, and small amounts of rough endoplasmic reticulum. The mitochondria are distinctive in that the cristae run parallel to the long axis of the organelle.


Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.


Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


1991 ◽  
Vol 273 (1) ◽  
pp. 153-160 ◽  
Author(s):  
J F Coquil ◽  
B Berthon ◽  
N Chomiki ◽  
L Combettes ◽  
P Jourdon ◽  
...  

The monohydroxy bile acid taurolithocholate permeabilizes the endoplasmic reticulum to Ca2+ in rat liver cells. To assess whether this action on the endoplasmic reticulum was restricted to this tissue, the effects of bile acid were investigated in two cell types quite unrelated to rat hepatocyte, namely human platelets and neuronal NG108-15 cell line. The results showed that taurolithocholate (3-100 microM) had no effect on free cytosolic [Ca2+] in human platelets and NG108-15 cells. whereas it increased it from 180 to 520 nM in rat hepatocytes. In contrast, in cells permeabilized by saponin, taurolithocholate initiated a profound release of the stored Ca2+ from the internal Ca2+ pools in the three cell types. The bile acid released 90% of the Ca2+ pools, with rate constants of about 5 min-1 and half-maximal effects at 15-30 microM. The results also showed that, in contrast with liver cells, which displayed an influx of [14C]taurolithocholate of 2 nmol/min per mg, human platelets and the neuronal cell line appeared to be resistant to [14C]taurolithocholate uptake. The influx measured in these latter cells was about 100-fold lower than in rat liver cells. Taken together, these data suggest that human platelets and NG108-15 cells do not possess the transport system for concentrating monohydroxy bile acids into cells. However, they show that human platelets and neuronal NG108-15 possess, in common with liver cells, the intracellular system responsible for taurolithocholate-mediated Ca2+ release from internal stores.


2021 ◽  
Author(s):  
Viorica Liebe Lastun ◽  
Matthew Freeman

In metazoans, the architecture of the endoplasmic reticulum (ER) differs between cell types, and undergoes major changes through the cell cycle and according to physiological needs. Although much is known about how the different ER morphologies are generated and maintained, especially the ER tubules, how context dependent changes in ER shape and distribution are regulated and the factors involved are less characterized. Here, we show that RHBDL4, an ER-resident rhomboid protease, modulates the shape and distribution of the ER, especially under conditions that require rapid changes in the ER sheet distribution, including ER stress. RHBDL4 interacts with CLIMP-63, a protein involved in ER sheet stabilisation, and with the cytoskeleton. Mice lacking RHBDL4 are sensitive to ER stress and develop liver steatosis, a phenotype associated with unresolved ER stress. Our data introduce a new physiological role of RHBDL4 and also imply that this function does not require its enzymatic activity.


2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Anthony M. Rossi ◽  
Shadi Jafari ◽  
Claude Desplan

During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document