Aspects of spatial and temporal cooccurrence in the life history stages of the sibling hakes, Urophycis chuss (Walbaum 1792) and Urophycis tenuis (Mitchill 1815) (Pisces: Gadidae)

1982 ◽  
Vol 60 (9) ◽  
pp. 2057-2078 ◽  
Author(s):  
Douglas F. Markle ◽  
David A. Methven ◽  
Linda J. Coates-Markle

The amount of coexistence in the sympatric sibling species, Urophycis chuss and U. tenuis, appears to be a function of ontogeny, with each life history stage showing different probabilities of interspecific encounters. Demersal juveniles coexist the least since U. chuss is inquiline with scallops and U. tenuis is in nearshore shallows. In U. tenuis there is also intraspecific segregation, with older juveniles and young adults bathymetrically segregated from the youngest demersal juveniles in summer.Relatively more coexistence is seen between neustonic juveniles. However, they show some seasonal and pronounced diel differences in availability to neuston nets (U. chuss predominates during the day and U. tenuis during night). The greatest coexistence is seen between adult U. chuss and adolescent to adult U. tenuis.Over its life, U. tenuis tends to move into deeper water while U. chuss is relatively stenotopic, its distribution largely a reaction to temperature. The life history strategy of U. tenuis is "get big quick," a goal achieved, in part, through delayed maturation (relative to U. chuss). The strategy of U. chuss seems to be avoid predation, concentrate growth in the juvenile stage, and "get mature quick." We speculate that both species' life histories may be subordinate to getting the demersal juveniles into the right nursery area at the right time.

2020 ◽  
Vol 119 (10) ◽  
pp. 3401-3413
Author(s):  
Peter A. Seeber ◽  
Tetiana A. Kuzmina ◽  
Alex D. Greenwood ◽  
Marion L. East

Abstract In wildlife, endoparasite burden can be affected by host life history stage, environmental conditions, host abundance, and parasite co-infections. We tested the effects of these factors on gastrointestinal parasite infection in plains zebras (Equus quagga) in the Serengeti ecosystem, Tanzania, using fecal egg counts of two nematode families (Strongylidae and Ascarididae) and the presence/absence of cestode (Anoplocephalidae) eggs. We predicted higher egg counts of Strongylidae and Ascarididae, and increased likelihood of Anoplocephalidae infection in individuals (1) during energetically costly life history stages when resource allocation to immune processes may decrease and in young zebras after weaning because of increased uptake of infective stages with forage, (2) when climatic conditions facilitate survival of infective stages, (3) when large zebra aggregations increase forage contamination with infective stages, and (4) in individuals co-infected with more than one parasite group as this may indicate reduced immune competence. Strongylidae egg counts were higher, and the occurrence of Anoplocephalidae eggs was more likely in bachelors than in band stallions, whereas Ascarididae egg counts were higher in band stallions. Strongylidae and Ascarididae egg counts were not increased in lactating females. Strongylidae egg counts were higher in subadults than in foals. Regardless of sex and age, Ascarididae infections were more likely under wet conditions. Co-infections did not affect Strongylidae egg counts. Ascarididae egg counts in adult females were higher when individuals were co-infected with Anoplocephalidae. We present evidence that parasite burdens in plains zebras are affected by life history stage, environmental conditions, and co-infection.


2018 ◽  
Vol 5 (2) ◽  
pp. 166-177 ◽  
Author(s):  
Adam C. Davis ◽  
Beth A. Visser ◽  
Anthony A. Volk ◽  
Tracy Vaillancourt ◽  
Steven Arnocky

2015 ◽  
Vol 66 (5) ◽  
pp. 399 ◽  
Author(s):  
Peter M. Yates ◽  
Michelle R. Heupel ◽  
Andrew J. Tobin ◽  
Stephen K. Moore ◽  
Colin A. Simpfendorfer

Effective conservation and management of shark populations is complicated by our limited understanding of their spatial ecology. For example, there are scarce data on diversity in community structure and nursery function across broader geographic scales (e.g. across multiple inshore systems) and the implications of this diversity for shark populations. Accordingly, fishery-independent surveys were undertaken to investigate shark communities along ~400km of the tropical eastern coast of Australia (18.1–20.6°S, 146.0–148.8°E). A variety of shark species were encountered, with 19 species of Carcharhiniformes contributing 99.2% of the total shark catch. Of the 1806 sharks captured, 567 were immature, including 336 young-of-the-year individuals. Immature sharks from 18 species were present; however, interspecific variation in the proportions of life-history stages was apparent. Multivariate analyses identified significant spatial heterogeneity in immature-shark communities. Results also highlighted the importance of tropical coastal habitats for numerous shark species, and indicated community-wide spatial structuring of sharks on the basis of body size rather than life-history stage. In addition to building on traditional shark-nursery paradigms, these results demonstrated that data on nursery function from restricted areas may not accurately portray patterns occurring over broader geographic scales, and this diversity may provide population-level benefits for sharks.


<em>Abstract.</em>—Pacific salmon <em>Oncorhynchus </em>spp. are important components of numerous food webs throughout their life history, yet we know very little about the historic and current abundance of these life history stages. We used past cannery records, recent harvest and hatchery records, and salmon life history information drawn from the literature to construct a simple bioregional model of historic and recent salmon abundance at egg, fry, smolt, ocean adult, and spawning stages for five species of Pacific salmon from Alaska to California. We found a historic-to-recent bioregional decline in salmon biomass in all life history stages. Recent salmon egg, fry, smolt, ocean-going adult, and escapement biomass estimates for northwestern North America are 74%, 55%, 59%, 86%, and 35%, respectively, of historic levels. Recent high productivity in Alaskan waters, however, masks a precipitous decline south of Alaska, where recent egg, fry, smolt, ocean-going adult, and escapement biomass levels are 34%, 23%, 50%, 40%, and 15% that of historic levels. Adult production and harvest levels are no longer sufficient measures of salmon management success. Researchers need to quantify and elucidate the ecosystem effects of historic biomass changes in life history stages of Pacific salmon on a watershed basis. Fisheries managers must set and meet specific targets for salmon life history stage abundance—from egg to spawning adult—to restore and maintain ecosystem function.


The Auk ◽  
2000 ◽  
Vol 117 (2) ◽  
pp. 479-489 ◽  
Author(s):  
Robert D. Magrath ◽  
Ashley W. Leedman ◽  
Janet L. Gardner ◽  
Anthony Giannasca ◽  
Anjeli C. Nathan ◽  
...  

Abstract An understanding of geographic and phylogenetic variation in passerine life histories is hampered by the scarcity of studies from the Southern Hemisphere. We documented the breeding biology of the White-browed Scrubwren (Sericornis frontalis), an Australia endemic in the Pardalotidae (parvorder Corvida). Like other members of the Pardalotidae, scrubwrens had a long laying interval (two days), a long incubation period (declining from 21 to 17 days through the season), and a long period of postfledging parental care (6 to 7 weeks). Scrubwrens appeared to be typical of the Australian Corvida in having a small clutch size (three eggs) and a long breeding season (5.4 months), and they also had a long interval between breeding attempts (10 days after a failed attempt, 21 days after a successful attempt). Scrubwrens were multibrooded, often raising two broods successfully and occasionally raising three broods. The breeding biology of scrubwrens adds further support to claims of a distinct life-history strategy for members of the Corvida but also reinforces evidence that some “Corvida” life-history traits more specifically are those of the Pardalotidae.


2007 ◽  
Vol 363 (1490) ◽  
pp. 425-441 ◽  
Author(s):  
John C Wingfield

The majority of vertebrates have a life span of greater than one year. Therefore individuals must be able to adapt to the annual cycle of changing conditions by adjusting morphology, physiology and behaviour. Phenotypic flexibility, in which an individual switches from one life history stage to another, is one way to maximize fitness in a changing environment. When environmental variation is low, few life history stages are needed. If environmental variation is large, there are more life history stages. Each life history stage has a characteristic set of sub-stages that can be expressed in various combinations and patterns to determine state at any point in the life of the individual. Thus individuals have a finite number of states that can be expressed over the spectrum of environmental conditions in their life spans. Life history stages have three phases–development, mature capability (when characteristic sub-stages can be expressed) and termination. Expression of a stage is time dependent (probably a minimum of one month), and termination of one stage overlaps development of the next stage. It follows that the more life history stages an individual expresses, the less flexibility it will have in timing those stages. Having fewer life history stages increases flexibility in timing, but less tolerance of variation in environmental conditions. To varying degrees it is possible to overlap mature capability of some life history stages to effectively reduce ‘finite stage diversity’ and maximize flexibility in timing. Theoretical ways by which this can be done, and the implications for neuroendocrine and endocrine control mechanisms are discussed. Twelve testable hypotheses are posed that relate directly to control mechanisms.


1979 ◽  
Vol 36 (3) ◽  
pp. 342-345 ◽  
Author(s):  
T. F. Waters

The symposium indicated many ways in which greater knowledge of benthic life histories can be used to develop and improve techniques such as sampling, taxonomic methods, and bioassays. Benthic organisms' diet and physical environment, factors variable in nature, were shown to be capable of modifying certain life history features such as growth rate and voltinism. The lack of accumulated life history data and the need to tailor sampling schedules to life history events were commonly identified elements in the symposium. Future research needs included (1) basic data on benthic life history, (2) improved taxonomy of immature benthic invertebrates, and (3) understanding the entire life history of an organism in relation to the seasonal progression of its environment. Management implications of benthic life history information included more applicable data from long-term bioassays on all life history stages, and improved management of stream fisheries through habitat alteration to manipulate benthic production. Key words: life history, benthos, symposium


2021 ◽  
Author(s):  
◽  
Melissa Marquez

<p>Over the last few decades, much effort has been devoted towards evaluating and reducing bycatch in marine fisheries. There has been a particular focus on quantifying the risk to chondrichthyans, primarily because of their relatively high vulnerability to overfishing. A key part of risk assessment is evaluating the distributional overlap of the fish with the fisheries, where fish distribution is influenced by habitat use. I synthesised published observations of habitat use for different life history stages of chondrichthyans and hypothesised the associated catch composition in terms of fish sex, size, and maturity. I then searched for these catch compositions, and thereby locations, using New Zealand research vessel catch data. Results show that some life history stages and habitats for certain species can be identified, whereas others could not. Pupping ground criteria were met for Callorhynchus milii (ELE), Hydrolagus novaezealandiae (GSH), and Hydrolagus bemisi (GSP); nursery ground criteria were met for Callorhynchus milii (ELE), mating ground criteria were met for Callorhynchus milii (ELE), Hydrolagus novaezealandiae (GSH), Hydrolagus bemisi (GSP), and Harriotta raleighana (LCH); lek-like mating criteria were met for Hydrolagus novaezealandiae (GSH). For those life-history stage habitats not found, this may be because these are outside of the coverage of the data set (and likely also commercial fisheries), or because they do not actually exist for some chondrichthyans. On the basis of results, I propose to change the order of species in the New Zealand qualitative (Level 1) risk assessment, and rise the relative risk for Hydrolagus bemisi (GSP), given the species vulnerability of pupping grounds.</p>


2016 ◽  
Vol 371 (1690) ◽  
pp. 20150187 ◽  
Author(s):  
Daniel Sol ◽  
Ferran Sayol ◽  
Simon Ducatez ◽  
Louis Lefebvre

The evolutionary origin of innovativeness remains puzzling because innovating means responding to novel or unusual problems and hence is unlikely to be selected by itself. A plausible alternative is considering innovativeness as a co-opted product of traits that have evolved for other functions yet together predispose individuals to solve problems by adopting novel behaviours. However, this raises the question of why these adaptations should evolve together in an animal. Here, we develop the argument that the adaptations enabling animals to innovate evolve together because they are jointly part of a life-history strategy for coping with environmental changes. In support of this claim, we present comparative evidence showing that in birds, (i) innovative propensity is linked to life histories that prioritize future over current reproduction, (ii) the link is in part explained by differences in brain size, and (iii) innovative propensity and life-history traits may evolve together in generalist species that frequently expose themselves to novel or unusual conditions. Combined with previous evidence, these findings suggest that innovativeness is not a specialized adaptation but more likely part of a broader general adaptive system to cope with changes in the environment.


2001 ◽  
Vol 58 (2) ◽  
pp. 375-385 ◽  
Author(s):  
Katriona Shea ◽  
Marc Mangel

Populations of coho salmon (Oncorhynchus kisutch) in California are listed as threatened under the U.S. Endangered Species Act. Such listings refer to adult populations, but often, juvenile life history stages are censused, so it is important to understand what affects the relationship between true adult and observed juvenile numbers. We present models to address how observational uncertainty, census length, and autocorrelation in vital rates affect our ability to observe trends. We ask two questions about our ability to detect declines in one life history stage from censuses of another. First, given an observed decline in parr numbers, what is the chance that this reflects a decline in adults? Second, given that adult numbers are declining, what is the chance that we see that decline in parr? Our results indicate that statistical power decreases with increasing observational uncertainty and decreasing census lengths and demonstrate how these two parameters interact. Power increases as the level of autocorrelation in mortality rates increases. Management recommendations include obtaining more accurate estimates of autocorrelation in mortality and of observational uncertainty.


Sign in / Sign up

Export Citation Format

Share Document