Acid–base and electrolyte responses to low pH maintained by phosphate–citrate buffers in the bathing medium of the larval salamander Ambystoma tigrinum

1988 ◽  
Vol 66 (11) ◽  
pp. 2383-2389 ◽  
Author(s):  
Marie L. DeRuyter ◽  
Daniel F. Stiffler

Larval Ambystoma tigrinum were exposed to an external pH of 3.5 to 7.5 using phosphate – citrate buffers in the bathing medium. Blood analysis of cannulated Ambystoma tigrinum at pH 5.5, 4.5, and 3.5 indicated their ability to maintain relatively stable arterial pH at the two higher values; however, at pH 3.5, the blood pH diminished over the 12-h period before death. The greater stability of arterial pH at higher external pH is partially due to a reversal of an initial increase in arterial [Formula: see text]. This may not be due entirely to pulmonary excretion of CO2 as it also occurred in animals that were forced to exchange gases solely across the skin – gill unit by being deprived of access to an air space. This result suggests increased skin – gill perfusion and (or) ventilation as a mechanism for lowering arterial [Formula: see text]. Sodium transport across the skin of A. tigrinum was measured over a buffered pH range of 3.5 to 7.5. Na+ influx decreased from 1.0 ± 0.1 μequiv. 10 g−1 h−1 (mean ± SEM) at pH 7.0 to 0.1 ± 0.1 μequiv. 10 g−1 h−1 at pH 3.5. Na+ efflux increased to 38.1 ± 8.7 μequiv. 10 g−1 h−1 from 4.1 ± 0.9 μequiv. 10 g−1 h−1 as pH declined from 7.0 to 3.5. Calcium added to the buffer at pH 4.5 decreased Na+ efflux at that pH. Na+ fluxes measured in nonbuffered, low-pH solutions revealed qualitatively similar patterns with lower efflux rates and lower critical pH values.

2009 ◽  
Vol 123 (2) ◽  
pp. 146 ◽  
Author(s):  
Robert Alvo

I monitored Common Loon (Gavia immer) breeding success in relation to lake pH (range 4.0–8.5) between 1982 and 2007 on 38 single-pair lakes (5–88 ha) in the Sudbury, Ontario, area. No chicks fledged on lakes with pH < 4.4. Chicks fledged on lakes with slightly higher pH only if the lakes were relatively large. Acidic lakes became less acidic as sulphur dioxide emissions from the Sudbury smelters and sulphur deposition from other long-range sources decreased. Two lakes initially too acidic to support successful loon reproduction eventually had successful reproduction. One loon pair used two large acidic lakes (combined area 140 ha) connected by shallow rapids, and one of the adults made extremely long dives (average = 99 s) while foraging for the chicks. One chick died on that lake after apparently ingesting a very large food item; the lack of smaller items was attributed to the lake’s acidity. My results suggest that a shortage of food for chicks is the main reason why low pH reduces breeding success. I suggest that, for lakes without high levels of dissolved organic carbon (DOC), the critical pH for loon breeding success is approximately 4.3, and the suboptimal pH is approximately 4.4–6.0.


2014 ◽  
Vol 52 (3-4) ◽  
pp. 271-277 ◽  
Author(s):  
Maria Zientara

Membrane potential and resistance changes in <em>Nitellopsis obtusa</em> induced by Na-humate as a function of external pH were investigated. The administration of Na-humate at concentrations of 12.5, 25, 50 and 100 mg dm<sup>-3</sup> brought about a hyperpolarization of the membrane potential and a drop of d.c. resistance in the pH range between 4.0 and 9.0. Depolarization of the membrane potential induced by low pH was counteracted by Na-humate. The electrophysiological effects of Na-humate are compared with those of IAA.


1993 ◽  
Vol 264 (5) ◽  
pp. H1588-H1598 ◽  
Author(s):  
D. J. Wendt ◽  
C. F. Starmer ◽  
A. O. Grant

The local anesthetic-class antiarrhythmic drugs produce greater depression of conduction in ischemic compared with normal myocardium. The basis for this relatively selective action is uncertain. A model of the pH-dependent interaction of tertiary amine drugs with the sodium channel suggests that the low pH occurring during ischemia slows drug dissociation from the channel by changing the drug's protonation. The importance of the proton exchange reaction and the effect of overall slowing of drug dissociation on steady-state sodium channel blockade is uncertain. We have measured whole cell sodium channel current in rabbit atrial myocytes during control and exposure to lidocaine while external pH was varied between 6.8 and 7.8 at membrane potentials of -140, -120, and -100 mV. Tonic blockade was little influenced by external pH. Decreasing the external pH from 7.8 to 6.8 slowed both the rate of development of phasic block and recovery from the block. Decreasing the membrane potential from -140 to -100 mV increased the degree of phasic block attained in the steady state. Block was further enhanced when low pH was combined with membrane depolarization. Experiments in which deuterium ions were substituted for protons suggest that the kinetics of proton exchange is not rate limiting in the dissociation of drugs from the sodium channel. We conclude that it is the combined effect of low pH and membrane depolarization that may be critical in the enhanced blocking action of local anesthetic-class drugs during ischemia.


1938 ◽  
Vol 21 (4) ◽  
pp. 411-430 ◽  
Author(s):  
Aurin M. Chase ◽  
Charles Haig

The absorption spectra of visual purple solutions extracted by various means were measured with a sensitive photoelectric spectrophotometer and compared with the classical visual purple absorption spectrum. Hardening the retinas in alum before extraction yielded visual purple solutions of much higher light transmission in the blue and violet, probably because of the removal of light-dispersing substances. Re-extraction indicated that visual purple is more soluble in the extractive than are the other colored retinal components. However, the concentration of the extractive did not affect the color purity of the extraction but did influence the keeping power. This suggests a chemical combination between the extractive and visual purple. The pH of the extractive affected the color purity of the resulting solution. Over the pH range from 5.5 to 10.0, the visual purple color purity was greatest at the low pH. Temperature during extraction was also effective, the color purity being greater the higher the temperature, up to 40°C. Drying and subsequent re-dissolving of visual purple solutions extracted with digitalin freed the solution of some protein impurities and increased its keeping power. Dialysis against distilled water seemed to precipitate visual purple from solution irreversibly. None of the treatments described improved the symmetry of the unbleached visual purple absorption spectrum sufficiently for it to resemble the classical absorption spectrum. Therefore it is very likely that the classical absorption spectrum is that of the light-sensitive group only and that the absorption spectra of our purest unbleached visual purple solutions represent the molecule as a whole.


1989 ◽  
Vol 259 (1) ◽  
pp. 47-53 ◽  
Author(s):  
C Montecucco ◽  
G Schiavo ◽  
B R Dasgupta

The interaction of botulinum neurotoxin serotypes A, B and E with membranes of different lipid compositions was examined by photolabelling with two photoreactive phosphatidylcholine analogues that monitor the polar region and the hydrophobic core of the lipid bilayer. At neutral pH the neurotoxins interacted both with the polar head groups and with fatty acid chains of phospholipids. At acidic pHs the neurotoxins underwent structural changes characterized by a more extensive interaction with lipids. Both the heavy and light chain subunits of the neurotoxins were involved in the process. The change in the nature and extent of toxin-lipid interaction occurred in the pH range 4-6 and was not influenced by the presence of polysialogangliosides. The present data are in agreement with the idea that botulinum neurotoxins enter into nerve cells from a low pH intracellular compartment.


2019 ◽  
Vol 104 (3) ◽  
pp. 1055-1062 ◽  
Author(s):  
Ngoc T. N. Ngo ◽  
Carl Grey ◽  
Patrick Adlercreutz

AbstractMethodology was developed to expand the range of benign alkyl glycoside surfactants to include also anionic types. This was demonstrated possible through conversion of the glycoside to its carboxyl derivative. Specifically, octyl β-D-glucopyranoside (OG) was oxidised to the corresponding uronic acid (octyl β-D-glucopyranoside uronic acid, OG-COOH) using the catalyst system T. versicolor laccase/2,2,6,6-tetramethylpiperidinyloxy (TEMPO) and oxygen from air as oxidant. The effects of oxygen supply methodology, concentrations of laccase, TEMPO and OG as well as reaction temperature were evaluated. At 10 mM substrate concentration, the substrate was almost quantitatively converted into product, and even at a substrate concentration of 60 mM, 85% conversion was reached within 24 h. The surfactant properties of OG-COOH were markedly dependent on pH. Foaming was only observed at low pH, while no foam was formed at pH values above 5.0. Thus, OG-COOH can be an attractive low-foaming surfactant, for example for cleaning applications and emulsification, in a wide pH range (pH 1.5–10.0).


2018 ◽  
Vol 42 (24) ◽  
pp. 19818-19826 ◽  
Author(s):  
Jayanta Mandal ◽  
Pravat Ghorai ◽  
Paula Brandão ◽  
Kunal Pal ◽  
Parimal Karmakar ◽  
...  

A simple, low cost aminoquinoline based pH sensor,HLwas prepared and it works at a low pH range.HLexhibits cell permeability and used as an effective tool for differentiating between normal and cancer cells.


1995 ◽  
Vol 58 (3) ◽  
pp. 319-321 ◽  
Author(s):  
SHERI MCINTYRE ◽  
JUDY Y. IKAWA ◽  
NINA PARKINSON ◽  
JOHN HAGLUND ◽  
JENNIFER LEE

An acidophilic sporeformer was isolated from several varieties of shelf-stable juices. The organism sporulated on potato dextrose agar (pH 3.5) at 37°C within 24 hours and grew well in fruit and berry juices. The pH range of growth in potato dextrose broth was 3.0 to 5.3. The D87.8°C' D91.1°C' and D95°C determined in berry juice were 11.0, 3.8, and 1.0 min, respectively. The ability of this organism to grow at low pH and to survive pasteurization poses a threat of economic loss by spoilage to beverage producers. The organism could not be identified based on its characteristics or the fatty acid profile comparison to those of other Bacillus species, including the acidophilic B. acidocaldarius.


1984 ◽  
Vol 47 (1) ◽  
pp. 36-40 ◽  
Author(s):  
S. M. FLYNN ◽  
F. M. CLYDESDALE ◽  
O. T. ZAJICEK

Effective stability constants for cysteine and lysine with five different iron sources were evaluated along with their behavior in solution. The values obtained for ferric chloride-cysteine, ferrous sulfate-cysteine, ferric chloride-lysine, ferrous sulfate-lysine, hydrogen-reduced lysine, and electrolytic-reduced lysine were 6.81 × 102 to 2.78 × 103, 1.33 × 105 to 1.36 × 105, 6.00 × 10−4 to 7.64 × 10−3, 6.37 ×10−4 to 4.82× 10−3, 9.34 × 10−2 to 1.38 × 10−1, and 4.18 × 10−4 to 7.27 × 10−4, respectively. No measurable complexation occurred with hydrogen- and electrolytic-reduced iron with cysteine nor with ferric orthophosphate and cysteine or lysine. The stability of soluble ferric cysteine over the pH range 2.0 to 7.4 indicates that this complex has the potential to be used as an iron additive in food. Approximately half of the hydrogen and electrolytic reduced iron and only 0.11% of ferric orthophosphate were soluble in acid, whereas ferric chloride and ferrous sulfate were completely soluble. Qualitative evaluation of the iron-amino acid systems over a range of pH from 2.0 to 12.0 indicated that there was a mixed valence state of free iron in most cases with low pH favoring reduction and high pH oxidation, until precipitation of iron hydroxides occurred.


1978 ◽  
Vol 171 (3) ◽  
pp. 639-647 ◽  
Author(s):  
Stephen P. Vincent ◽  
Robert C. Bray

Nitrate reductase was purified from anaerobically grown Escherichia coli K12 by a method based on the Triton X-100 extraction procedure of Clegg[(1976) Biochem. J.153, 533–541], but hydrophobic interaction chromatography was used in the final stage. E.p.r. spectra obtained from the enzyme under a variety of conditions are well resolved and were interpreted with the help of the computer-simulation procedures of Lowe [(1978) Biochem. J.171, 649–651]. Parameters for five molybdenum(V) species from the enzyme are given. The low-pH species (gav. 1.9827) is in pH-dependent equilibrium with the high-pH species (gav. 1.9762), the pK for interconversion of the species being 8.26. Of a variety of anions tested, only nitrate and nitrite formed complexes with the enzyme (in the low-pH form), giving modified molybdenum(V) e.p.r. spectra. These complexes, as well as the low-pH form of the free enzyme, showed interaction of molybdenum with a single exchangeable proton. The fifth molybdenum(V) species, sometimes detected in small amounts, appears not to be due to functional nitrate reductase. After full reduction of the enzyme with dithionite, addition of nitrate caused reoxidation of molybdenum to the quinquivalent state, in a time less than the enzyme turnover. Activity of the enzyme in the pH range 6–10 is controlled by a pK of 8.2. It is suggested that the low-pH signal-giving species is the form of the enzyme involved in the catalytic cycle. Iron–sulphur and other e.p.r. signals from the enzyme are briefly described and the enzymic reaction mechanism is discussed.


Sign in / Sign up

Export Citation Format

Share Document