Influence of parental stock and incubation temperature on the early development of coho salmon (Oncorhynchus kisutch) in British Columbia

1990 ◽  
Vol 68 (2) ◽  
pp. 347-358 ◽  
Author(s):  
C. B. Murray ◽  
T. D. Beacham ◽  
J. D. McPhail

Coho salmon (Oncorhynchus kisutch) stocks in British Columbia spawning from October to April were surveyed for variation in developmental characteristics at incubation temperatures from 1.5 to 15 °C. There were no trends in embryo or alevin survival rates associated with spawning time or spawning temperature. The highest embryo and alevin survival rates occurred at 4 or 5 °C and complete mortality generally occurred at 14 or 15 °C. Vancouver and Queen Charlotte Island stocks had lower survival rates at 1.5 and 2 °C than did mainland stocks. Time to 50% hatching and 50% emergence varied inversely with incubation temperature. Alevin hatching time for the Pallant Creek stock on the Queen Charlotte Islands was later than for all other stocks. Stocks had different trends in alevin and fry length and weight with respect to incubation temperature. Northern stocks tended to be more efficient than southern stocks at converting yolk to body tissue at 1.5 and 2 °C, as were mainland stocks compared with island stocks.

1982 ◽  
Vol 60 (6) ◽  
pp. 1463-1469 ◽  
Author(s):  
Terry D. Beacham

Significant regional and annual variability in fecundity of coho salmon (Oncorhynchus kisutch) and chum salmon (O. keta) in British Columbia was detected during this investigation. A Kodiak Island (Alaska) coho salmon stock was more fecund than southern stocks in British Columbia and Washington. Fecundity ranged from 2450 to 2850 eggs per female at 53.6 cm postorbital–hypural length for Vancouver Island stocks to over 4400 eggs per female for a Kodiak Island stock at the same length. Chum stocks on Vancouver Island and the Queen Charlotte Islands generally had fecundities less than 3200 eggs per female at 58.8 cm postorbital–hypural length, whereas chum of equal lengths in mainland British Columbia stocks ranged from 3200 to 3450 eggs per female. Older chum and coho were usually more fecund than younger ones, but this difference could be accounted for by differences in mean length-at-age, fecundity being related to body size.


1998 ◽  
Vol 55 (9) ◽  
pp. 2067-2077 ◽  
Author(s):  
Claribel Coronado ◽  
Ray Hilborn

Survival rates for coho salmon (Oncorhynchus kisutch) were estimated for all coded wire tag release groups in the Pacific Northwest between 1971 and 1990. The spatial and temporal patterns show considerable geographic variation, with most regions south of northern British Columbia showing declining survival since 1983, while northern areas have shown increasing survival during that period. The number of years of operation explained very little of the variation in survival, and many hatcheries showed major increases in survival after several years of operation. Survival of marked wild fish generally showed the same trend as hatchery fish. We conclude that the dominant factor affecting coho salmon survival since the 1970s is ocean conditions and that there are major geographic differences in the pattern of ocean conditions. The decline in survival seen in British Columbia and south over the last decade suggests that a major reduction in exploitation rates is necessary to maintain the populations.


2017 ◽  
Vol 130 (4) ◽  
pp. 336 ◽  
Author(s):  
Eric A Parkinson ◽  
Chris J Perrin ◽  
Daniel Ramos-Espinoza ◽  
Eric B Taylor

The Coho Salmon, Oncorhynchus kisutch, is one of seven species of Pacific salmon and trout native to northeastern Pacific Ocean watersheds. The species is typically anadromous; adults reproduce in fresh water where juveniles reside for 1–2 years before seaward migration after which the majority of growth occurs in the ocean before maturation at 2–4 years old when adults return to fresh water to spawn. Here, we report maturation of Coho Salmon in two freshwater lakes on the north coast of British Columbia apparently without their being to sea. A total of 15 mature fish (11 males and four females) were collected in two lakes across two years. The mature fish were all at least 29 cm in total length and ranged in age from three to five years old. The occurrence of Coho Salmon that have matured in fresh water without first going to sea is exceedingly rare in their natural range, especially for females. Such mature Coho Salmon may represent residual and distinct breeding populations from those in adjacent streams. Alternatively, they may result from the ephemeral restriction in the opportunity to migrate seaward owing to low water levels in the spring when Coho Salmon typically migrate to sea after 1–2 years in fresh water. Regardless of their origin, the ability to mature in fresh water without seaward migration may represent important adaptive life history plasticity in response to variable environments.


1986 ◽  
Vol 64 (1) ◽  
pp. 84-87 ◽  
Author(s):  
Thomas P. Quinn ◽  
Graeme M. Tolson

To test the hypothesis that population-specific pheromones guide adult salmonids to their natal streams, juvenile and adult coho salmon (Oncorhynchus kisutch) were tested for chemosensory responses in two-choice tanks. Coho salmon from Quinsam and Big Qualicum rivers, British Columbia, Canada, distinguished their own population from the other. Tagging evidence indicates that straying between these two rivers and a third, geographically intermediate river seldom occurs. Thus, population-specific chemicals constitute a potential source of information for homing coho salmon, though their role vis-à-vis imprinted odors from other sources could not be evaluated.


1976 ◽  
Vol 33 (1) ◽  
pp. 54-62 ◽  
Author(s):  
M. A. Giles ◽  
W. E. Vanstone

The effects of incubation temperature, pH, sodium, potassium, and ATP concentration, and ouabain on the activity of Na+–K+-activated ATPase of the gills of seawater-adapted juvenile coho salmon (Oncorhynchus kisutch) were determined. The temperature and pH optima were 40 C and 7.4, respectively. The apparent Km for ATP at equimolar Mg++ concentration was 0.2 mM at Na+ and K+ concentrations of 100 and 20 mM, respectively. Maximal enzyme activity for Na+ concentration of 10.50 and 100 mM occurred at K+ concentrations of 12.5, 15.0, and 20.0 mM, respectively. The Ki for ouabain was 2 × 10−6 M and 7 × 10−6 for K+ concentrations of 10 and 20 mM, respectively.A large portion (up to 60%) of the ouabain-sensitive ATPase activity in freshwater fish was activated by sodium ions in the absence of potassium ions (Na+-activation). Exposure to sea water resulted in a large increase in total ouabain-sensitive activity and a sharp decrease in the proportion of sodium activation. These changes occurred within 14 days after transfer to full strength sea water.On a seasonal basis, total ouabain-sensitive enzyme activity in juvenile freshwater coho was low (less than 5 μmol Pi/mg N per h) to the end of November, increased to a peak (over 125 μmol Pi/mg N per h) in mid-January, and subsequently declined by late February. A slow, steady rise in activity occurred during the smoking period of March and April and the relative contribution of sodium ions to the total activity declined in this period.


2010 ◽  
Vol 67 (8) ◽  
pp. 1316-1334 ◽  
Author(s):  
Brian C. Spence ◽  
James D. Hall

The timing of ocean entry by salmon smolts is presumed adaptive to maximize survival during this critical life transition. We analyzed the peak timing, duration, and interannual variation in timing of smolt migrations for 53 coho salmon ( Oncorhynchus kisutch ) populations from central California to Kodiak Island, Alaska. The objective was to examine potential influences of both local watershed characteristics and larger-scale processes in the marine environment on smolt migration patterns. Multivariate analyses demonstrated a strong latitudinal gradient in migration patterns with trends toward later, shorter, and more predictable migrations with increasing latitude. Cluster analysis performed on migration descriptors indicated three major population groupings that coincide with major coastal oceanic regions in the northeast Pacific: a northern group from Kodiak Island to the Queen Charlotte Islands, British Columbia, a central group from the Queen Charlotte Islands south to the Columbia River, and a southern group from the Columbia River southward. These regional patterns transcended local variability associated with watershed characteristics and trap location, suggesting that the patterns reflect adaptation to differences in timing and relative predictability of favorable conditions in the marine environments that smolts enter.


1986 ◽  
Vol 64 (4) ◽  
pp. 1038-1040 ◽  
Author(s):  
Z. Kabata ◽  
D. J. Whitaker ◽  
J. W. Bagshaw

An unusual case of infection of coho salmon, Oncorhynchus kisutch (Walbaum), in British Columbia, Canada, with a myxosporean Kudoa thyrsitis (Gilchrist) is described. This first report of Kudoa parasitizing a member of the genus Oncorhynchus is interesting also because of the unusual site of Kudoa in the fish, the cardiac muscle.


1985 ◽  
Vol 42 (12) ◽  
pp. 2020-2028 ◽  
Author(s):  
Eric B. Taylor ◽  
J. D. McPhail

Ten populations of juvenile coho salmon, Oncorhynchus kisutch, from streams tributary to the upper Fraser River, the lower Fraser River, and the Strait of Georgia region were morphologically compared. Juveniles from coastal streams (Fraser River below Hell's Gate and the Strait of Georgia) were more robust (deeper bodies and caudal peduncles, shorter heads, and larger median fins) than interior Juveniles. Discriminant function analysis indicated that juvenile coho could be identified as to river of origin with 71% accuracy. Juvenile coho from coastal streams were less successfully classified as to stream of origin; however, juveniles could be successfully identified as either coastal or interior with 93% accuracy. Juvenile coho from north coastal British Columbia, Alaska, and the upper Columbia system also fitted this coastal and interior grouping. This suggests that a coastwide coastal–interior dichotomy in juvenile body form exists. Three populations (one interior and two coastal) were studied in more detail. In these populations the coastal versus interior morphology was consistent over successive years, and was also displayed in individuals reared from eggs in the laboratory. Adult coho salmon also showed some of the coastal–interior morphological differences exhibited by juveniles. We concluded that the morphological differences between coastal and interior coho salmon are at least partially inherited.


Sign in / Sign up

Export Citation Format

Share Document