Role of the second nearest-neighbor hoppings in a disordered Bose–Hubbard Hamiltonian in the Many-Body Localization

2020 ◽  
Vol 93 (9) ◽  
Author(s):  
Edith Djoukouo Ngueyounou ◽  
Kanabet Yapara ◽  
Celsus Bouri ◽  
Hugues Merlain Tetchou Nganso ◽  
Moïse Godfroy Kwato Njock
Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


2008 ◽  
Vol 59 ◽  
pp. 63-68
Author(s):  
Václav Paidar

Two basic processes, namely shear and shuffling of atomic planes can be considered as elementary mechanisms of displacive phase transformations. The atomistic models suitable to investigate the role of interfaces in the structural changes are tested. The many-body potentials are used for the description of interatomic forces. General displacements of atomic planes are examined, i.e. γ-surface type calculations extensively used for stacking fault and lattice dislocation analysis are applied to single plane shuffling and alternate shuffling of every other atomic plane producing in combination with homogeneous deformation the hcp structure. Similar approach considering shear type planar displacements leads to the Zener path between the bcc and fcc lattices. The effect of additional deformation required to obtain the close-packed atomic arrangements is analysed.


1990 ◽  
Vol 193 ◽  
Author(s):  
Nancy F. Wright ◽  
Gayle S. Painter

ABSTRACTWe report results from a first-principles local spin density quantum mechanical study of the energetics and elastic properties of a series of magnesium-oxygen clusters of various morphologies. The role of quantum effects, e.g. covalency, in the bonding character of diatomic MgO is determined by comparison of classical and quantum restoring force curves. The dependence of binding properties on geometry and metal to oxygen ratio is determined by comparison of binding energy curves for a series of clusters. Results show that while gross features of the binding curves may be represented by simple interatomic potentials, details require the many body corrections of a full quantum treatment.


1998 ◽  
Vol 249-251 ◽  
pp. 603-606
Author(s):  
H.P van der Meulen ◽  
J Rubio ◽  
J.M Calleja ◽  
C Tejedor ◽  
F Rodriguez ◽  
...  

1992 ◽  
Vol 291 ◽  
Author(s):  
Y. S. Li ◽  
Y. Cai ◽  
J. M. Newsam

ABSTRACTWe study the structure and growth sequence of small palladium clusters Pdn using the Many-Body Alloy (MBA) potential and simulated annealing techniques. Our results show the preference of compact polyhedral structures. These equilibrium structures are compared with the bulk Pd crystal in terms of cohesive energies and nearest neighbor distances. Both the cohesive energy and the nearest neighbor distance show a slow convergence to bulk behaviors. By analyzing the detailed structures and cohesive energies, we find that Pd4, Pd7 and Pd13 are magic number structures, which are the consequence of their high symmetry and large coordination number.


1997 ◽  
Vol 491 ◽  
Author(s):  
F. Manghi ◽  
V. Bellini ◽  
M. Rontani ◽  
C. Arcangeli

ABSTRACTWe present the results of a recently developed approach where the interplay between the itinerant and localized character of electrons in narrow band materials is described by adding on-site correlation effects to a realistic band calculation: the single particle band states are treated as mean field solutions of a multi-orbital Hubbard Hamiltonian and the many-body term associated with localized e-e interaction is described in a configuration-interaction scheme. Quasi-particle states of nickel and CuGe03 have been calculated and compared with spectroscopical results.


2013 ◽  
Vol 380-384 ◽  
pp. 4262-4267
Author(s):  
Zhong Long Wang ◽  
Qiao Wu ◽  
Lin Jie Ding

The finite-temperature magnetic properties of an antiferromagnetic (AF) bond alternating S=1/2 zigzag spin chain with asymmetrical AF next-nearest-neighbor (NNN) exchange interactions in an external magnetic field are investigated by means of the many-body Greens function theory within random phase approximation. The results show that when the NNN exchange interactions are asymmetrical, the spin system exhibit a clear ferrimagnetic ordering at finite temperatures. It is shown that the ferrimagnetic behavior is attributed to asymmetrical elementary excitations, resulting from the competition between the spin frustrations and magnetic excitations reduced by the asymmetrical NNN interactions. The mechanism of this ferrimagnetism is much different from a common one which originates from mixed spins with different spin values through antiparallel spin alignments.


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


Sign in / Sign up

Export Citation Format

Share Document