scholarly journals Measurement of $$W^\pm $$ boson production in Pb+Pb collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.02~\text {Te}\text {V}$$ with the ATLAS detector

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA measurement of $$W^\pm $$W± boson production in Pb+Pb collisions at $$\sqrt{s_\mathrm {NN}} = 5.02~\text {Te}\text {V}$$sNN=5.02Te is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of $$0.49\;\mathrm {nb^{-1}}$$0.49nb-1. The $$W^\pm $$W± bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying $$W^\pm $$W± bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for $$W^+$$W+ and $$W^-$$W- bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the $$W^\pm $$W± boson production cross-sections measured in pp collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for $$W^-$$W- ($$W^+$$W+) bosons.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. V. Garzelli ◽  
L. Kemmler ◽  
S. Moch ◽  
O. Zenaiev

Abstract We present predictions for heavy-quark production at the Large Hadron Collider making use of the $$ \overline{\mathrm{MS}} $$ MS ¯ and MSR renormalization schemes for the heavy-quark mass as alternatives to the widely used on-shell renormalization scheme. We compute single and double differential distributions including QCD corrections at next-to-leading order and investigate the renormalization and factorization scale dependence as well as the perturbative convergence in these mass renormalization schemes. The implementation is based on publicly available programs, MCFM and xFitter, extending their capabilities. Our results are applied to extract the top-quark mass using measurements of the total and differential $$ t\overline{t} $$ t t ¯ production cross-sections and to investigate constraints on parton distribution functions, especially on the gluon distribution at low x values, from available LHC data on heavy-flavor hadro-production.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Ferran Faura ◽  
Shayan Iranipour ◽  
Emanuele R. Nocera ◽  
Juan Rojo ◽  
Maria Ubiali

AbstractWe present an improved determination of the strange quark and antiquark parton distribution functions of the proton by means of a global QCD analysis that takes into account a comprehensive set of strangeness-sensitive measurements: charm-tagged cross sections for fixed-target neutrino–nucleus deep-inelastic scattering, and cross sections for inclusive gauge-boson production and W-boson production in association with light jets or charm quarks at hadron colliders. Our analysis is accurate to next-to-next-to-leading order in perturbative QCD where available, and specifically includes charm-quark mass corrections to neutrino–nucleus structure functions. We find that a good overall description of the input dataset can be achieved and that a strangeness moderately suppressed in comparison to the rest of the light sea quarks is strongly favored by the global analysis.


Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
O. Abdinov ◽  
...  

Abstract This paper presents measurements of the $$W^+ \rightarrow \mu ^+\nu $$W+→μ+ν and $$W^- \rightarrow \mu ^-\nu $$W-→μ-ν cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton–proton collisions at a centre-of-mass energy of 8 $$\text {TeV}$$TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $$20.2~\text{ fb }^{-1}$$20.2fb-1. The precision of the cross-section measurements varies between 0.8 and 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Markus A. Ebert ◽  
Bernhard Mistlberger ◽  
Gherardo Vita

Abstract We compute the quark and gluon transverse momentum dependent parton distribution functions at next-to-next-to-next-to-leading order (N3LO) in perturbative QCD. Our calculation is based on an expansion of the differential Drell-Yan and gluon fusion Higgs production cross sections about their collinear limit. This method allows us to employ cutting edge multiloop techniques for the computation of cross sections to extract these universal building blocks of the collinear limit of QCD. The corresponding perturbative matching kernels for all channels are expressed in terms of simple harmonic polylogarithms up to weight five. As a byproduct, we confirm a previous computation of the soft function for transverse momentum factorization at N3LO. Our results are the last missing ingredient to extend the qT subtraction methods to N3LO and to obtain resummed qT spectra at N3LL′ accuracy both for gluon as well as for quark initiated processes.


2012 ◽  
Vol 85 (9) ◽  
Author(s):  
A. Kusina ◽  
T. Stavreva ◽  
S. Berge ◽  
F. I. Olness ◽  
I. Schienbein ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Admir Greljo ◽  
Nudžeim Selimović

Abstract When a TeV-scale leptoquark has a sizeable Yukawa coupling, its dominant production mechanism at hadron colliders is the partonic-level lepton-quark fusion. Even though the parton distribution functions for leptons inside the proton are minuscule, they get compensated by the resonant enhancement. We present the first computation of higher order radiative corrections to the resonant leptoquark production cross section at the Large Hadron Collider (LHC). Next-to-leading (NLO) QCD and QED corrections are similar in size but come with the opposite sign. We compute NLO K-factors for a wide range of scalar leptoquark masses, as well as, all possible combinations of quark and lepton flavors and leptoquark charges. Theoretical uncertainties due to the renormalisation and factorisation scale variations and the limited knowledge of parton distribution functions are quantified. We finally discuss how to disentangle the flavor structure of leptoquark interactions by exploiting the interplay between different production channels.


Sign in / Sign up

Export Citation Format

Share Document