scholarly journals Fat brane, dark matter and localized kinetic terms in six dimensions

Author(s):  
Ricardo G. Landim

Abstract Extra dimensions (ED) have been used as attempts to explain several phenomena in particle physics over the years. In this paper we investigate the role of an abelian gauge field as mediator of the interaction between dark matter (DM) and Standard Model (SM) particles, in a model with two flat and transverse ED compactified on the chiral square. DM is confined in a thin brane, localized at the origin of the chiral square, while the SM is localized in a finite width brane, lying in the opposite corner of the square. A brane-localized kinetic term is present in the DM brane, while in the fat brane it is not allowed. In this model the kinetic mixing is not required because we assume that the SM particles couple to the mediator through their $$B-L$$B-L charges, while DM couples to it via a dark charge. Assuming a complex scalar field as DM candidate it is possible to obtain the observed DM relic abundance and avoid direct detection constraints for some parameter choices.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Tanushree Basak ◽  
Baradhwaj Coleppa ◽  
Kousik Loho

Abstract We revisit the two real singlet extension of the Standard Model with a $$ {Z}_2\times {Z}_2^{\prime } $$ Z 2 × Z 2 ′ symmetry. One of the singlet scalars S2, by virtue of an unbroken $$ {Z}_2^{\prime } $$ Z 2 ′ symmetry, plays the role of a stable dark matter candidate. The other scalar S1, with spontaneously broken Z2-symmetry, mixes with the SM Higgs boson and acts as the scalar mediator. We analyze the model by putting in the entire set of theoretical and recent experimental constraints. The latest bounds from direct detection Xenon1T experiment severely restricts the allowed region of parameter space of couplings. To ensure the dark matter satisfies the relic abundance criterion, we rely on the Breit-Wigner enhanced annihilation cross-section. Further, we study the viability of explaining the observed gamma-ray excess in the galactic center in this model with a dark matter of mass in the ∼ 36 − 51 GeV window and present our conclusions.


1994 ◽  
Vol 50 (12) ◽  
pp. 7128-7143 ◽  
Author(s):  
V. A. Bednyakov ◽  
H. V. Klapdor-Kleingrothaus ◽  
S. G. Kovalenko

2011 ◽  
Author(s):  
F. Briscese ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
Elí Santos-Rodríguez ◽  
...  

2016 ◽  
Vol 31 (22) ◽  
pp. 1643004 ◽  
Author(s):  
Graham D. Kribs ◽  
Ethan T. Neil

We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.


Author(s):  
Simon Daley

The PICO experiment uses superheated bubble chambers located at SNOLAB for direct detection of Weakly Interacting Massive Particles (WIMPs), one of the candidate particles for dark matter. Bubbles form in the detector when a particle interacts with a nucleus of the target fluid, and the recoiling deposits enough energy to nucleate a bubble in the superheated fluid. Much of the data analysis for PICO focuses on determining what type of particle caused a bubble to form. The differentiation is made by analysing signals from pressure sensors, piezoelectric acoustic sensors, and stereoscopic cameras. This talk will present an overview of the sensors and analysis which are used to discriminate between WIMP interactions and background events in the PICO 2L detector, with a focus on the role of image analysis and the potential sensitivity of the detector if good discrimination can be realized.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Michael L. Graesser ◽  
Jacek K. Osiński

Abstract The thermal freeze-out mechanism for relic dark matter heavier than O(10 − 100 TeV) requires cross-sections that violate perturbative unitarity. Yet the existence of dark matter heavier than these scales is certainly plausible from a particle physics perspective, pointing to the need for a non-thermal cosmological history for such theories. Topological dark matter is a well-motivated scenario of this kind. Here the hidden-sector dark matter can be produced in abundance through the Kibble-Zurek mechanism describing the non-equilibrium dynamics of defects produced in a second order phase transition. We revisit the original topological dark matter scenario, focusing on hidden-sector magnetic monopoles, and consider more general cosmological histories. We find that a monopole mass of order (1–105) PeV is generic for the thermal histories considered here, if monopoles are to entirely reproduce the current abundance of dark matter. In particular, in a scenario involving an early era of matter domination, the monopole number density is always less than or equal to that in a pure radiation dominated equivalent provided a certain condition on critical exponents is satisfied. This results in a larger monopole mass needed to account for a fixed relic abundance in such cosmologies.


2002 ◽  
pp. 2049-2052
Author(s):  
L. Arturo Ureña-López ◽  
Tonatiuh Matos

2016 ◽  
Vol 25 (07) ◽  
pp. 1630018
Author(s):  
Rita Bernabei

Nearly a century of experimental observations and theoretical arguments have pointed out that a large fraction of the Universe is composed by dark matter particles. Many possibilities are open on the nature and interaction types of such relic particles. Moreover, the poor knowledge of many fundamental astrophysical, nuclear and particle physics aspects as well as of some experimental and theoretical parameters, the different used approaches and target materials, etc. make it challenging to understand the implication of some different experimental efforts. Some general arguments are addressed here. Future perspectives are mentioned.


2014 ◽  
Vol 29 (02) ◽  
pp. 1430002 ◽  
Author(s):  
TANJA RINDLER-DALLER ◽  
PAUL R. SHAPIRO

The nature of the cosmological dark matter (DM) remains elusive. Recent studies have advocated the possibility that DM could be composed of ultra-light, self-interacting bosons, forming a Bose–Einstein condensate (BEC) in the very early Universe. We consider models which are charged under a global U(1)-symmetry such that the DM number is conserved. It can then be described as a classical complex scalar field which evolves in an expanding Universe. We present a brief review on the bounds on the model parameters from cosmological and galactic observations, along with the properties of galactic halos which result from such a DM candidate.


1990 ◽  
Vol 05 (08) ◽  
pp. 593-603 ◽  
Author(s):  
N. SHAJI ◽  
R. SHANKAR ◽  
M. SIVAKUMAR

We show, using path integral methods, that a complex scalar field in 2+1 dimensions coupled to an abelian gauge field with Chern-Simons action is equivalent to a free Dirac fermion. We show the equivalence of the vacuum functional and construct the fermion fields explicitly. Our proof is independent of the long wavelength approximation.


Sign in / Sign up

Export Citation Format

Share Document