scholarly journals Final results of the LOPES radio interferometer for cosmic-ray air showers

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
W. D. Apel ◽  
◽  
J. C. Arteaga-Velázquez ◽  
L. Bähren ◽  
K. Bekk ◽  
...  

AbstractLOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 to 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a summary of the achievements, results, and lessons learned from LOPES. By digital, interferometric beamforming the detection of air showers became possible in the radio-loud environment of the Karlsruhe Institute of Technology (KIT). As a prototype experiment, LOPES tested several antenna types, array configurations and calibration techniques, and pioneered analysis methods for the reconstruction of the most important shower parameters, i.e., the arrival direction, the energy, and mass-dependent observables such as the position of the shower maximum. In addition to a review and update of previously published results, we also present new results based on end-to-end simulations including all known instrumental properties. For this, we applied the detector response to radio signals simulated with the CoREAS extension of CORSIKA, and analyzed them in the same way as measured data. Thus, we were able to study the detector performance more accurately than before, including some previously inaccessible features such as the impact of noise on the interferometric cross-correlation beam. These results led to several improvements, which are documented in this paper and can provide useful input for the design of future cosmic-ray experiments based on the digital radio-detection technique.

2006 ◽  
Vol 21 (supp01) ◽  
pp. 168-181 ◽  
Author(s):  
A. HORNEFFER ◽  
W. D. APEL ◽  
F. BADEA ◽  
L. BÄHREN ◽  
K. BEKK ◽  
...  

Measuring radio pulses from cosmic ray air showers offers various new opportunities. New digital radio receivers allow measurements of these radio pulses even in environments that have lots of radio interference. With high bandwidth ADCs and fast data processing it is possible to store the whole waveform information in digital form and analyse transient events like air showers even after they have been recorded. Digital filtering and beam forming can be used to suppress the radio interference so that it is possible to measure the radio pulses even in radio loud environments. LOPES is a prototype station for the new digital radio interferometer LOFAR and is tailored to measure air showers. For this it is located at the site of the KASCADE-Grande air shower experiment. Already with the first phase of LOPES we have been able to measure radio pulses from air showers and show correlations between the radio pulse height and air shower parameters. The first part gives an introduction and presents the science results of LOPES, while the second part presents the hard- and software that enables LOPES to detect air short pulses.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Harm Schoorlemmer ◽  
Washington R. Carvalho

AbstractWe developed a radio interferometric technique for the observation of extensive air showers initiated by cosmic particles. In this proof-of-principle study we show that properties of extensive air showers can be derived with high accuracy in a straightforward manner. When time synchronisation below $$\sim $$ ∼ 1 ns between different receivers can be achieved, direction reconstruction resolution of $$< 0.2^\circ $$ < 0 . 2 ∘ and resolution on the depth of shower maximum of $$<10$$ < 10  g/cm$$^2$$ 2 are obtained over the full parameter range studied, with even higher accuracy for inclined incoming directions. In addition, by applying the developed method to dense arrays of radio antennas, the energy threshold for the radio detection of extensive air showers can be significantly lowered. The proposed method can be incorporated in operational and future cosmic particle observatories and with its high accuracy it has the potential to play a crucial role in unravelling the composition of the ultra-high-energy cosmic-particle flux.


2019 ◽  
Vol 216 ◽  
pp. 03009 ◽  
Author(s):  
Tim Huege ◽  
Lukas Brenk ◽  
Felix Schlüter

Radio detection of inclined air showers is currently receiving great attention. To exploit the potential, a suitable event reconstruction needs to be developed. A crucial step in this direction is the development of a model for the lateral distribution of the radio signals, which in the case of inclined air showers exhibits asymmetries due to “earlylate” effects in addition to the usual asymmetries from the superposition of charge-excess and geomagnetic emission. We present a model which corrects for all asymmetries and successfully describes the lateral distribution of the energy fluence with a rotationally symmetric function. This gives access to the radiation energy as a measure of the energy of the cosmic-ray primary, and is also sensitive to the depth of the shower maximum.


2018 ◽  
Vol 33 (26) ◽  
pp. 1850153 ◽  
Author(s):  
L. B. Arbeletche ◽  
V. P. Gonçalves ◽  
M. A. Müller

The understanding of the basic properties of the ultrahigh-energy extensive air showers is dependent on the description of hadronic interactions in an energy range beyond that probed by the LHC. One of the uncertainties present in the modeling of air showers is the treatment of diffractive interactions, which are dominated by nonperturbative physics and usually described by phenomenological models. These interactions are expected to affect the development of the air showers, since they provide a way of transporting substantial amounts of energy deep in the atmosphere, modifying the global characteristics of the shower profile. In this paper, we investigate the impact of diffractive interactions in the observables that can be measured in hadronic collisions at high energies and ultrahigh-energy cosmic ray interactions. We consider three distinct phenomenological models for the treatment of diffractive physics and estimate the influence of these interactions on the elasticity, number of secondaries, longitudinal air shower profiles and muon densities for proton-air and iron-air collisions at different primary energies. Our results demonstrate that even for the most recent models, diffractive events have a non-negligible effect on the observables and that the distinct approaches for these interactions, present in the phenomenological models, still are an important source of theoretical uncertainty for the description of the extensive air showers.


2021 ◽  
Vol 16 (11) ◽  
pp. P11035
Author(s):  
M. Bielewicz ◽  
A. Bancer ◽  
M. Barabanov ◽  
A. Chlopik ◽  
M. Czarnynoga ◽  
...  

Abstract This report presents a concept of constructing a detector dedicated for detection of muons observed during measurements carried out at the MPD (Multi-Purpose Detector) detector that is currently under construction at the NICA facility, Russia, Dubna. It has been proposed to design and build an additional detector that will complement the current MPD set and increase its measurement capabilities. The main goal of this project is to provide information from cosmic muons that pass the MPD detector in both in-beam and off-beam experiments. Hence, the detector is called the MPD COsmic Ray Detector (MCORD).The conceptual design of MCORD is proposed by a Polish consortium NICA-PL comprising several Polish scientific institutions. The data from cosmic ray muons could be used as a trigger for calibration of other detection systems comprising the MPD detector. Large surface covered by the MCORD offers also possibility for efficient registration of muons generated in expanding atmospheric showers induced by distant sources. Moreover, beyond some energy threshold, observation of muons originating from decays of collision products will also be possible. In this report examples of the MCORD functionality as a part of the MPD detector are presented. The MCORD is designed as a universal, fast triggering system built as a modular reconfigurable construction. The detection system will be based on plastic scintillators equipped with wavelength shifting fibers, and silicon photomultipliers (SiPM) will be used for scintillation readout. The online analysis of received signals will be performed using digital FPGA modules. Due to the modular design, the same system (its small part) can be used for both laboratory testing of other MPD sub-detectors, and the calibration of these detectors after placing them inside the MPD in off-beam mode. The full detector will support these systems as an additional trigger, calibrator, and muon identifier during the normal operation of the MPD detector with the beam. Thanks to its unique construction, it will expand the possibilities of collecting scientific data of the MPD detector with astrophysical observations. The publication will show the assumptions of the mechanical structure and electronic systems of the planned detector. The installation site of the detector as part of the MPD detector will be described in detail. In the following, the results of simulations made in preparation for this project will be presented. In particular, simulations with the CORSIKA code present angular distributions of particles in cosmic showers in the Dubna city region. Since muons dominate the cosmic ray showers, the MPD detector response to expected cosmic muon flux was also simulated. The results provide information about the muon cut-off thresholds depending on the MPD detector composition during the installation campaign. Simulations of muon events that could be used for MPD subsystems calibration were also performed. The results shown for various configuration of MCORD detector modules will enable the estimation of the time necessary to perform such tests in the future. Simulations with UrQMD model shows the muon abundances due to beam-beam collisions. Approximately 90% of muons are created from pions, whereas the number of muons that reach the MCORD detector is 10 times greater than the number of pions. The MPD detector response was also simulated under the influence of a stream of various particles, especially muons. It shows energy dependence of muon transmission coefficient for MPD with and without ECal assembled. Assuming requirement for muon transmission above 95%, the muon cut-off thresholds are 1.6 GeV and 2.0 GeV, respectively. MCORD detector performance evaluation is also reported. In the case when we used scintillators with one fiber with a diameter of 1 mm, the time resolution of about 1.0 ns was recorded, which corresponds to the positional accuracy (σx) of 7.1 cm. The results of laboratory tests show that application of a 2 mm diameter WLS fiber instead of the previously used 1 mm diameter fiber improves the time resolution to 0.80 ns.


2015 ◽  
Vol 754-755 ◽  
pp. 859-864
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

One of the characteristics of longitudinal development of extensive air showers is the number of charged particles and depth of shower maximum in extensive air showers as a function of primary energy, which is often used to reconstruct the elemental composition of primary cosmic rays. Studying of extensive air shower characteristics was performed by investigating the longitudinal development parameters depending on Heitler model for different primary particles. The simulation of the number of charged particles and depth of shower maximum (NandXmax) in extensive air showers of particle cascades was performed using AIRES code for SIBYLL hadronic model for different primary particles like electron, positron, gamma quanta and iron nuclei at the energy range 1014-1019eV. The comparison between the simulated longitudinal development ofNandXmaxusing SIBYLL hadronic model with two hadronic models (QGSJET99 ans SIBYLL16) has shown an opportunity for determination of cosmic ray cascade interactions in extensive air showers.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.


Sign in / Sign up

Export Citation Format

Share Document