scholarly journals Metric-affine bumblebee gravity: classical aspects

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Adrià Delhom ◽  
J. R. Nascimento ◽  
Gonzalo J. Olmo ◽  
A. Yu. Petrov ◽  
Paulo J. Porfírio

AbstractWe consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.

Author(s):  
Salvatore Capozziello ◽  
Maurizio Capriolo ◽  
Loredana Caso

Abstract We derive the gravitational waves for $$f\left( T, B\right) $$fT,B gravity which is an extension of teleparallel gravity and demonstrate that it is equivalent to f(R) gravity by linearized the field equations in the weak field limit approximation. f(T, B) gravity shows three polarizations: the two standard of general relativity, plus and cross, which are purely transverse with two-helicity, massless tensor polarization modes, and an additional massive scalar mode with zero-helicity. The last one is a mix of longitudinal and transverse breathing scalar polarization modes. The boundary term B excites the extra scalar polarization and the mass of scalar field breaks the symmetry of the TT gauge by adding a new degree of freedom, namely a single mixed scalar polarization.


Author(s):  
Michael Kachelriess

The vielbein formalism is developed as a tool to determine the coupling of matter to gravity. After determining the relation to the standard formalism, the action and the field equations of gravity are introduced. The linearised Einstein equations which describe the weak-field limit of gravity are derived.


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 234
Author(s):  
Torsten Asselmeyer-Maluga ◽  
Jerzy Król

In this paper, we will describe the idea that dark matter partly consists of gravitational solitons (gravisolitons). The corresponding solution is valid for weak gravitational fields (weak field limit) with respect to a background metric. The stability of this soliton is connected with the existence of a special foliation and amazingly with the smoothness properties of spacetime. Gravisolitons have many properties of dark matter, such as no interaction with light but act on matter via gravitation. In this paper, we showed that the gravitational lensing effect of gravisolitons agreed with the lensing effect of usual matter. Furthermore, we obtained the same equation of state w=0 as matter.


2004 ◽  
Vol 13 (02) ◽  
pp. 359-371 ◽  
Author(s):  
GIUSEPPE BASINI ◽  
MARCO RICCI ◽  
FULVIO BONGIORNO ◽  
SALVATORE CAPOZZIELLO

We investigate the weak-field limit of scalar-tensor theory of gravity and show that results are directly depending on the coupling and self-interaction potential of the scalar field. In particular, corrections are derived for the Newtonian potential. We discuss astrophysical applications of the results, in particular the flat rotation curves of spiral galaxies.


2017 ◽  
Vol 45 ◽  
pp. 1760046
Author(s):  
Lídice Cruz Rodríguez ◽  
Aurora Pérez Martínez ◽  
Gabriella Piccinelli ◽  
Elizabeth Rodríguez Querts

We study the Quantum Faraday rotation starting from the photon self-energy in the presence of a constant magnetic field. The Faraday angle is calculated in the non-degenerate regime and for weak field limit. Two physical scenarios, possibly characterized by these conditions, are the recombination epoch and the jets originated in pulsars. We discuss the resonant behavior that the Faraday angle exhibits in these scenarios and investigate the possibility of detecting cosmic magnetic fields through this resonant mechanism.


2010 ◽  
pp. 165-208
Author(s):  
Salvatore Capozziello ◽  
Valerio Faraoni

2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Cláudio Gomes

Abstract The weak field limit of the nonminimally coupled Boltzmann equation is studied, and relations between the invariant Bardeen scalar potentials are derived. The Jean’s criterion for instabilities is found through the modified dispersion relation. Special cases are scrutinised and considerations on the model parameters are discussed for Bok globules.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Özgür Akarsu ◽  
Alexey Chopovsky ◽  
Valerii Shulga ◽  
Ezgi Yalçınkaya ◽  
Alexander Zhuk

Sign in / Sign up

Export Citation Format

Share Document