scholarly journals Equilibrium Spin Distribution From Detailed Balance

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Ziyue Wang ◽  
Xingyu Guo ◽  
Pengfei Zhuang

AbstractAs the core ingredient for spin polarization, the equilibrium spin distribution function that eliminates the collision terms is derived from the detailed balance principle. The kinetic theory for interacting fermionic systems is applied to the Nambu–Jona-Lasinio model at quark level. Under the semi-classical expansion with respect to $$\hbar $$ ħ , the kinetic equations for the vector and axial-vector distribution functions are obtained with collision terms. For an initially unpolarized system, spin polarization can be generated at the first order of $$\hbar $$ ħ from the coupling between the vector and axial-vector charges. Different from the classical transport theory, the collision terms in a quantum theory vanish only in global equilibrium with Killing condition.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ömer F. Dayi ◽  
Eda Kilinçarslan

Abstract Fluid of spin-1/2 fermions is represented by a complex scalar field and a four-vector field coupled both to the scalar and the Dirac fields. We present the underlying action and show that the resulting equations of motion are identical to the (hydrodynamic) Euler equations in the presence of Coriolis force. As a consequence of the gauge invariances of this action we established the quantum kinetic equation which takes account of noninertial properties of the fluid in the presence of electromagnetic fields. The equations of the field components of Wigner function in Clifford algebra basis are employed to construct new semiclassical covariant kinetic equations of the vector and axial-vector field components for massless as well as massive fermions. Nonrelativistic limit of the chiral kinetic equation is studied and shown that it generates a novel three-dimensional transport theory which does not depend on spatial variables explicitly and possesses a Coriolis force term. We demonstrated that the three-dimensional chiral transport equations are consistent with the chiral anomaly. For massive fermions the three-dimensional kinetic transport theory generated by the new covariant kinetic equations is established in small mass limit. It possesses the Coriolis force and the massless limit can be obtained directly.


2021 ◽  
Vol 36 (01) ◽  
pp. 2130001
Author(s):  
Jian-Hua Gao ◽  
Zuo-Tang Liang ◽  
Qun Wang

We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formalism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32 coupled equations. For massless fermions, the number of independent equations can be significantly reduced due to the decoupling of left-handed and right-handed particles. It can be proved that out of many components of Wigner functions and their coupled equations, only one kinetic equation for the distribution function is independent. This is called the disentanglement theorem for Wigner functions of chiral fermions. For massive fermions, it turns out that one particle distribution function and three spin distribution functions are independent and satisfy four kinetic equations. Various chiral and spin effects such as chiral magnetic and vortical effects, the chiral separation effect, spin polarization effects can be consistently described in the formalism.


2004 ◽  
Vol 19 (29) ◽  
pp. 5027-5041 ◽  
Author(s):  
HARLEEN DAHIYA ◽  
MANMOHAN GUPTA

Using χ QM with configuration mixing, the contribution of the gluon polarization to the flavor singlet component of the total spin has been calculated phenomenologically through the relation [Formula: see text] as defined in the Adler–Bardeen scheme, where ΔΣ on the right-hand side is Q2 independent. For evaluation the contribution of gluon polarization [Formula: see text], ΔΣ is found in the χ QM by fixing the latest E866 data pertaining to [Formula: see text] asymmetry and the spin polarization functions whereas ΔΣ(Q2) is taken to be 0.30±0.06 and αs=0.287±0.020, both at Q2=5 GeV 2. The contribution of gluon polarization Δg' comes out to be 0.33 which leads to an almost perfect fit for spin distribution functions in the χ QM . When its implications for magnetic moments are investigated, we find perfect fit for many of the magnetic moments. If an attempt is made to explain the angular momentum sum rule for proton by using the above value of Δg', one finds the contribution of gluon angular momentum to be as important as that of the [Formula: see text] pairs.


1986 ◽  
Vol 36 (3) ◽  
pp. 313-328 ◽  
Author(s):  
F. Cozzani ◽  
W. Horton

The transport theory of a high-energy ion species injected isotropically in a magnetized plasma is considered for arbitrary ratios of the high-energy ion cyclotron frequency to the collisional slowing down time. The assumptions of (i) low fractional density of the high-energy species and (ii) average ion speed faster than the thermal ions and slower than the electrons are used to decouple the kinetic equation for the high-energy species from the kinetic equations for background ions and electrons. The kinetic equation is solved by a Chapman–Enskog expansion in the strength of the gradients; an equation for the first correction to the lowest-order distribution function is obtained without scaling a priori the collision frequency with respect to the gyrofrequency. Various transport coefficients are explicitly calculated for the two cases of a weakly and a strongly magnetized plasma.


1998 ◽  
Vol 5 (2) ◽  
pp. 111-120 ◽  
Author(s):  
E. Marsch

Abstract. Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of ions with electromagnetic Alfvén and ion-cyclotron waves propagating along the mean magnetic field. Acceleration and heating rates are calculated. They may be used in the multi-fluid momentum and energy equations as anomalous transport terms. The corresponding evolution equation for the average wave spectrum is established, and the effective growth/damping rate for the spectrum is calculated. Given a simple power-law spectrum, an anomalous collision frequency can be derived which depends on the slope and average intensity of the spectrum, and on the gyrofrequency and the differential motion (with respect to the wave frame) of the actual ion species considered. The wave-particle interaction terms attain simple forms resembling the ones for collisional friction and temperature anisotropy relaxation (due to pitch angle scattering) with collision rates that are proportional to the gyrofrequency but diminished substantially by the relative wave energy or the fluctuation level with respect the background field. In addition, a set of quasilinear diffusion equations is derived for the reduced (with respect to the perpendicular velocity component) velocity distribution functions (VDFs), as they occur in the wave dispersion equation and the related dielectric function for parallel propagation. These reduced VDFs allow one to describe adequately the most prominent observed features, such as an ion beam and temperature anisotropy, in association with the resonant interactions of the particles with the waves on a kinetic level, yet have the advantage of being only dependent upon the parallel velocity component.


Author(s):  
Anthony Mezzacappa ◽  
Eirik Endeve ◽  
O. E. Bronson Messer ◽  
Stephen W. Bruenn

AbstractThe proposal that core collapse supernovae are neutrino driven is still the subject of active investigation more than 50 years after the seminal paper by Colgate and White. The modern version of this paradigm, which we owe to Wilson, proposes that the supernova shock wave is powered by neutrino heating, mediated by the absorption of electron-flavor neutrinos and antineutrinos emanating from the proto-neutron star surface, or neutrinosphere. Neutrino weak interactions with the stellar core fluid, the theory of which is still evolving, are flavor and energy dependent. The associated neutrino mean free paths extend over many orders of magnitude and are never always small relative to the stellar core radius. Thus, neutrinos are never always fluid like. Instead, a kinetic description of them in terms of distribution functions that determine the number density of neutrinos in the six-dimensional phase space of position, direction, and energy, for both neutrinos and antineutrinos of each flavor, or in terms of angular moments of these neutrino distributions that instead provide neutrino number densities in the four-dimensional phase-space subspace of position and energy, is needed. In turn, the computational challenge is twofold: (i) to map the kinetic equations governing the evolution of these distributions or moments onto discrete representations that are stable, accurate, and, perhaps most important, respect physical laws such as conservation of lepton number and energy and the Fermi–Dirac nature of neutrinos and (ii) to develop efficient, supercomputer-architecture-aware solution methods for the resultant nonlinear algebraic equations. In this review, we present the current state of the art in attempts to meet this challenge.


1980 ◽  
Vol 23 (1) ◽  
pp. 91-113 ◽  
Author(s):  
C. T. Dum ◽  
E. Marsch ◽  
W. Pilipp

A stability analysis which directly uses particle distribution functions determined from experiments or transport theory, rather than model distributions, is carried out. The features of distribution functions relevant to whistlers, ion cyclotron waves, including their low-frequency extensions for propagation along the magnetic field, and to ion-acoustic waves are analyzed in detail. The dependence of wave growth on the precise shape of the distributions and the numerical feasibility of the method is demonstrated by the use of measured solar wind distributions.


Sign in / Sign up

Export Citation Format

Share Document