scholarly journals Hadron interactions for arbitrary energies and species, with applications to cosmic rays

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Torbjörn Sjöstrand ◽  
Marius Utheim

AbstractThe Pythia event generator is used in several contexts to study hadron and lepton interactions, notably $$\mathrm{p}\mathrm{p}$$ p p and $$\mathrm{p}{\bar{\mathrm{p}}}$$ p p ¯ collisions. In this article we extend the hadronic modelling to encompass the collision of a wide range of hadrons h with either a proton or a neutron, or with a simplified model of nuclear matter. To this end we model $$h\mathrm{p}$$ h p total and partial cross sections as a function of energy, and introduce new parton distribution functions for a wide range of hadrons, as required for a proper modelling of multiparton interactions. The potential usefulness of the framework is illustrated by a simple study of the evolution of cosmic rays in the atmosphere, and by an even simpler one of shower evolution in a solid detector material. The new code will be made available for future applications.

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA measurement of $$W^\pm $$W± boson production in Pb+Pb collisions at $$\sqrt{s_\mathrm {NN}} = 5.02~\text {Te}\text {V}$$sNN=5.02Te is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of $$0.49\;\mathrm {nb^{-1}}$$0.49nb-1. The $$W^\pm $$W± bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying $$W^\pm $$W± bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for $$W^+$$W+ and $$W^-$$W- bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the $$W^\pm $$W± boson production cross-sections measured in pp collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for $$W^-$$W- ($$W^+$$W+) bosons.


2017 ◽  
Vol 32 (19n20) ◽  
pp. 1750121 ◽  
Author(s):  
H. Hosseinkhani ◽  
M. Modarres ◽  
N. Olanj

Transverse momentum dependent (TMD) parton distributions, also referred to as unintegrated parton distribution functions (UPDFs), are produced via the Kimber–Martin–Ryskin (KMR) prescription. The GJR08 set of parton distribution functions (PDFs) which are based on the valence-like distributions is used, at the leading order (LO) and the next-to-leading order (NLO) approximations, as inputs of the KMR formalism. The general and the relative behaviors of the generated TMD PDFs at LO and NLO and their ratios in a wide range of the transverse momentum values, i.e. [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are investigated. It is shown that the properties of the parent valence-like PDFs are imprinted on the daughter TMD PDFs. Imposing the angular ordering constraint (AOC) leads to the dynamical variable limits on the integrals which in turn increase the contributions from the lower scales at lower [Formula: see text]. The results are compared with our previous studies based on the MSTW2008 input PDFs and it is shown that the present calculation gives flatter TMD PDFs. Finally, a comparison of longitudinal structure function [Formula: see text] is made by using the produced TMD PDFs and those that were generated through the MSTW2008-LO PDF from our previous work and the corresponding data from H1 and ZEUS collaborations and a reasonable agreement is found.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Admir Greljo ◽  
Nudžeim Selimović

Abstract When a TeV-scale leptoquark has a sizeable Yukawa coupling, its dominant production mechanism at hadron colliders is the partonic-level lepton-quark fusion. Even though the parton distribution functions for leptons inside the proton are minuscule, they get compensated by the resonant enhancement. We present the first computation of higher order radiative corrections to the resonant leptoquark production cross section at the Large Hadron Collider (LHC). Next-to-leading (NLO) QCD and QED corrections are similar in size but come with the opposite sign. We compute NLO K-factors for a wide range of scalar leptoquark masses, as well as, all possible combinations of quark and lepton flavors and leptoquark charges. Theoretical uncertainties due to the renormalisation and factorisation scale variations and the limited knowledge of parton distribution functions are quantified. We finally discuss how to disentangle the flavor structure of leptoquark interactions by exploiting the interplay between different production channels.


2019 ◽  
Vol 64 (7) ◽  
pp. 602
Author(s):  
O. Kovalenko

The ALICE experiment is designed to study the properties of the matter created in proton-proton and heavy-ion collisions at the LHC. Neutral mesons can be reconstructed in ALICE in a wide range of transverse momenta via two-photon decays. Neutral meson measurements in pp collisions give an opportunity to validate the NLO or NNLO pQCD calculations and to constrain the parton distribution functions and the parton fragmentation functions. Neutral meson spectra measured in pA and AA collisions allow us to test a modification of the parton distribution functions in nuclei and the parton energy loss in the hot matter created in AA collisions. The recent results from ALICE on direct photon measurements in the Pb–Pb, neutral pion and n meson productions in pp, p-Pb, and Pb–Pb collisions are presented.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alessandro Candido ◽  
Stefano Forte ◽  
Felix Hekhorn

Abstract It is common lore that Parton Distribution Functions (PDFs) in the $$ \overline{\mathrm{MS}} $$ MS ¯ factorization scheme can become negative beyond leading order due to the collinear subtraction which is needed in order to define partonic cross sections. We show that this is in fact not the case and next-to-leading order (NLO) $$ \overline{\mathrm{MS}} $$ MS ¯ PDFs are actually positive in the perturbative regime. In order to prove this, we modify the subtraction prescription, and perform the collinear subtraction in such a way that partonic cross sections remain positive. This defines a factorization scheme in which PDFs are positive. We then show that positivity of the PDFs is preserved when transforming from this scheme to $$ \overline{\mathrm{MS}} $$ MS ¯ , provided only the strong coupling is in the perturbative regime, such that the NLO scheme change is smaller than the LO term.


Sign in / Sign up

Export Citation Format

Share Document