Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate

2016 ◽  
Vol 131 (6) ◽  
Author(s):  
Ilyas Khan ◽  
Nehad Ali Shah ◽  
Dumitru Vieru
2011 ◽  
Vol 66 (12) ◽  
pp. 753-759 ◽  
Author(s):  
Constantin Fetecau ◽  
Corina Fetecau ◽  
Mehwish Rana

General solutions corresponding to the unsteady motion of second-grade fluids induced by an infinite plate that applies a shear stress ƒ (t) to the fluid are established. These solutions can immediately be reduced to the similar solutions for Newtonian fluids. They can be used to obtain known solutions from the literature or any other solution of this type by specifying the function ƒ (.). Furthermore, in view of a simple remark, general solutions for the flow due to a moving plate can be developed.


2022 ◽  
Vol 6 (1) ◽  
pp. 38
Author(s):  
Ridhwan Reyaz ◽  
Ahmad Qushairi Mohamad ◽  
Yeou Jiann Lim ◽  
Muhammad Saqib ◽  
Sharidan Shafie

Fractional derivatives have been proven to showcase a spectrum of solutions that is useful in the fields of engineering, medical, and manufacturing sciences. Studies on the application of fractional derivatives on fluid flow are relatively new, especially in analytical studies. Thus, geometrical representations for fractional derivatives in the mechanics of fluid flows are yet to be discovered. Nonetheless, theoretical studies will be useful in facilitating future experimental studies. Therefore, the aim of this study is to showcase an analytical solution on the impact of the Caputo-Fabrizio fractional derivative for a magnethohydrodynamic (MHD) Casson fluid flow with thermal radiation and chemical reaction. Analytical solutions are obtained via Laplace transform through compound functions. The obtained solutions are first verified, then analysed. It is observed from the study that variations in the fractional derivative parameter, α, exhibits a transitional behaviour of fluid between unsteady state and steady state. Numerical analyses on skin friction, Nusselt number, and Sherwood number were also analysed. Behaviour of these three properties were in agreement of that from past literature.


2017 ◽  
Vol 11 ◽  
pp. 43-56 ◽  
Author(s):  
S. Venkateswarlu ◽  
S.V.K. Varma ◽  
R.V.M.S.S. Kiran Kumar ◽  
Chakravarthula S.K. Raju ◽  
Putta Durga Prasad

The present study aims to analyze the radiation absorption and viscous dissipation effects on MHD free convective Casson fluid flow over a vertical permeable semi-infinite plate in the presence of first order homogeneous chemical reaction. The time-dependent wall suction is assumed to occur at the permeable surface. The non-Newtonian fluid behavior is characterized by using the Casson fluid model. The coupled non-linear ordinary differential equations (ODE’s) are solved by perturbation technique. The impact of sundry parameters on the velocity, temperature, species concentration as well as the friction factor coefficient, the rate of heat and mass transfer coefficients are computed and analyzed through graphs.


2004 ◽  
Vol 4 (4) ◽  
pp. 391-409 ◽  
Author(s):  
Santabrata Chakravarty ◽  
Prashanta Kumar Mandal ◽  

Abstract The mechanics of the blood flow in a flexible tapered artery with stenosis is studied from the viewpoint of a mathematical model. The flowing blood is represented by a two-fluid model, consisting of a core region of suspension of all erythrocytes assumed to be characterized by a Casson fluid and a peripheral plasma layer free from cells of any kind as a Newtonian fluid. The moving wall of the artery is treated as an anisotropic, linear viscoelastic incompressible circular cylindrical membrane cell. The effect of the surrounding connective tissues on the motion of the artery wall is also given due attention. The unsteady flow mechanism, subjected to a pulsatile pressure gradient has been solved using the finite difference scheme by exploiting the appropriate physically realistic prescribed conditions. The present model is also employed to study the effect of taper angle, the wall deformation, the severity of the stenonis, the viscosity of the peripheral layer, and the non-Newtonian rheology of streaming blood on the dynamic flow field. Finally, the numerical illustration presented at the end of the paper provides an effective quantitative measure of the flux, the resistive impedance and the wall shear stress through their graphical representations and also a few comparisons with the existing results have been made in order to validate the applicability of the present model.


2010 ◽  
Vol 88 (9) ◽  
pp. 675-687 ◽  
Author(s):  
D. Vieru ◽  
Corina Fetecau ◽  
C. Fetecau

The unsteady flow of an incompressible generalized Oldroyd-B fluid induced by an infinite plate subject to a time-dependent shear-stress is studied by means of the Fourier cosine and Laplace transforms. The solutions that have been obtained, written under integral and series form in terms of the generalized Ga,b,c(·,t) functions, are presented as a sum of the Newtonian solutions and the corresponding non-Newtonian contributions. They satisfy all imposed initial and boundary conditions, and for λ and λr → 0 reduce to the Newtonian solutions. Furthermore, the similar solutions for generalized Maxwell fluids as well as those for ordinary fluids are also obtained as limiting cases of general solutions. Finally, to reveal some relevant physical aspects of the obtained results, the diagrams of the velocity field v(y, t) have been depicted against y for different values of t and of the material and fractional parameters.


Sign in / Sign up

Export Citation Format

Share Document