scholarly journals Accelerated expansion of the universe and chasing photons from the CMB to study the late time integrated Sachs-Wolfe effect over different redshift ranges

2019 ◽  
Vol 134 (6) ◽  
Author(s):  
Syed Faisal ur Rahman ◽  
Muhammad Jawed Iqbal
Universe ◽  
2019 ◽  
Vol 5 (8) ◽  
pp. 185
Author(s):  
Muhammad Sharif ◽  
Qanitah Ama-Tul-Mughani

In this paper, we study the phase space portrait of homogeneous and isotropic universe by taking different coupling functions between dark energy models and bulk viscous dark matter. The dimensionless quantities are introduced to establish an autonomous set of equations. To analyze the stability of the cosmos, we evaluate critical points and respective eigenvalues for different dynamical quantities. For bulk viscous matter and radiation in tachyon coupled field, these points show stable evolution when γ ≫ δ but accelerated expansion of the universe for δ > 1 9 . The stability of the universe increases for some stationary points which may correspond to the late-time expansion for the coupled phantom field.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 164
Author(s):  
Igor I. Smolyaninov

In this paper, we study the corrections to the Friedmann equations due to fast fluctuations in the universe scale factor. Such fast quantum fluctuations were recently proposed as a potential solution to the cosmological constant problem. They also induce strong changes to the current sign and magnitude of the average cosmological force, thus making them one of the potential probable causes of the modification of Newtonian dynamics in galaxy-scale systems. It appears that quantum fluctuations in the scale factor also modify the Friedmann equations, leading to a considerable modification of cosmological evolution. In particular, they give rise to the late-time accelerated expansion of the universe, and they may also considerably modify the effective universe potential.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


2012 ◽  
Vol 07 ◽  
pp. 174-183
Author(s):  
DAO-JUN LIU ◽  
BIN YANG ◽  
XING-HUA JIN

We study the cosmological dynamics of Brans-Dicke theory in which there are fermions with a coupling to BD scalar field as well as a self-interaction potential. The conditions that there exists a solution which is stable and represents a late-time accelerated expansion of the universe are found. It is shown that the late-time acceleration depends completely on the self-interaction of the fermion field if our investigation is restricted to the theory with positive BD parameter ω. Provided a negative ω is allowed, there will be another two class of stable solutions describing late-time accelerated expansion of the universe. Besides, we find that chameleon mechanism will be possessed in our theory when a suitable self-interaction of fermion field is considered.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 78 ◽  
Author(s):  
Paulo M. Sá

The generalized hybrid metric-Palatini theory of gravity admits a scalar-tensor representation in terms of two interacting scalar fields. We show that, upon an appropriate choice of the interaction potential, one of the scalar fields behaves like dark energy, inducing a late-time accelerated expansion of the universe, while the other scalar field behaves like pressureless dark matter that, together with ordinary baryonic matter, dominates the intermediate phases of cosmic evolution. This unified description of dark energy and dark matter gives rise to viable cosmological solutions, which reproduce the main features of the evolution of the universe.


2012 ◽  
Vol 27 (34) ◽  
pp. 1250208 ◽  
Author(s):  
JAUME GINÉ

This paper attempts to connect two new gravitational mechanisms: the Verlinde's holographic model of gravity and the modification of inertia resulting from a Hubble-scale Casimir effect (MiHsC) of McCulloch. First we give a short survey about how the holographic scenario can give the correct dynamics of the universe. The introduction of a two-holographic screens one comparable to the Hubble horizon and a second screen that takes into account the contribution of all the matter between the test particle and the observer gives directly the modified Friedmann acceleration equation for the dynamical evolution of the universe. Improvements of this equation using the quantum corrections will realize the inflation at high energy scales and the late-time acceleration (i.e. the accelerated expansion of the universe nowadays) obviating the dark energy. From both models we can derive a version of Modified Newtonian Dynamics (MOND) observed in the dynamics of the astronomical objects obviating the dark matter and explaining other astronomical anomalies. A first connection between both theories is given at the end of the paper.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012058
Author(s):  
Yerlan Myrzakulov ◽  
Sabit Bekov ◽  
Kairat Myrzakulov

Abstract In this work, we consider a homogeneous and isotropic cosmological model of the universe in f (T, B) gravity with non-minimally coupled fermionic field. In order to find the form of the coupling function F(Ψ), the potential function V (Ψ) of the fermionic field and the function f (T, B), we found through the Noether symmetry approach. The results obtain are coincide with the observational data that describe the late-time accelerated expansion of the universe.


2018 ◽  
Vol 33 (18n19) ◽  
pp. 1850116 ◽  
Author(s):  
Parth Shah ◽  
Gauranga C. samanta ◽  
Salvatore Capozziello

The late time accelerated expansion of the universe can be realized using scalar fields with the given self-interacting potentials. Here, we consider a straightforward approach where a three cosmic fluid mixture is assumed. The fluids are standard matter perfect fluid, dark matter, and a scalar field with the role of dark energy. A dynamical system analysis is developed in this context. A central role is played by the equation of state [Formula: see text] which determines the acceleration phase of the models. Determining the domination of a particular fluid at certain stages of the universe history by stability analysis allows, in principle, to establish the succession of the various cosmological eras.


2013 ◽  
Vol 91 (12) ◽  
pp. 1090-1092
Author(s):  
V. Fayaz ◽  
F. Felegary ◽  
H. Hossienkhani

Motivated by the work of Karami and Fehri (Phys. Lett. B, 684, 61 (2010)). We generalize their work with varying G. We investigate the new holographic dark energy model with varying G. We consider a spatially nonflat universe containing interacting new holographic dark energy with pressureless dark matter. We obtain the equation of state and the deceleration parameters. Also we reconstruct ωA for a = a0tn and H = [β/(α − 1)](1/t) in the late time universe. We also obtain q for a = a0tn and H = [β/(α − 1)](1/t) in the present time universe, which describes accelerated expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document