OPTICAL ENERGY GAP OF MAGNETICALLY CONFINED ARC DISCHARGE D.C. SPUTTERED HYDROGENATED AMORPHOUS SILICON

Author(s):  
M. C. ABDULRIDA ◽  
H. A. HAMED ◽  
B. A. HASSAN
2002 ◽  
Vol 715 ◽  
Author(s):  
Shuhei Yagi ◽  
Takashi Okabayashi ◽  
Katsuya Abe ◽  
Akira Yamada ◽  
Makoto Konagai

AbstractWe proposed a new carbon source, 1,3-disilabutane (H3Si-CH2-SiH2-CH3:1,3-DSB), to grow hydrogenated amorphous silicon carbide (a-SiC:H) films by mercury-sensitized photochemical vapor deposition (photo-CVD). We described preliminary results of undoped and p-type a-SiC films deposited using 1,3-DSB. It was found that the optical energy gap of the films was changed even at very small 1,3-DSB/silane ratios of few percents. P-type doping was carried out by using diborane and we obtained the films with a darkconductivity of 1.3x10-4 S/cm at the optical bandgap of 2.1 eV. In addition, we applied this material for a p-layer of a p-i-n type a-Si based solar cell and we have achieved relatively high conversion efficiency of 9.55%.


2016 ◽  
Vol 30 (12) ◽  
pp. 1650140
Author(s):  
Haihua Tang ◽  
Shuang Liu ◽  
Xiang Zhou ◽  
Yunfei Liu ◽  
Dejun Chen ◽  
...  

Hydrogenated amorphous silicon (a-Si:H) thin films were prepared by radio frequency (RF) plasma enhanced chemical vapor deposition (RF-PECVD) technique with silane (SiH[Formula: see text] as reactive gas. The influence of process parameters on the morphological characteristics and optical properties of a-Si:H thin films were systematically investigated. When the RF power density was taken as the only variable, it firstly improves the smoothness of the surface with increasing the RF power density below the value of 0.17 W/cm2, and then exhibits an obvious degradation at further power density. The refractive index, extinction coefficient, optical energy gap initially increase and reach a maximum at 0.17 W/cm2, followed by a significant decrease with further RF power density. When the RF power density was taken as the only variable, the surface of a-Si:H thin films become smoother by increasing the reaction pressure in the investigated range (from 50 Pa to 140 Pa), and the refractive index, extinction coefficient, optical energy gap increase with increasing of reaction pressure. The effect of RF power density and the reaction pressure on the morphological characteristics and optical properties of a-Si:H thin films was obtained, contributing to the further studies of the performance and applications of a-Si:H thin films.


2013 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Endhah Purwandari ◽  
Toto Winata

Solar cell efficiency as a function of the energy gap has been simulated by calculating the output current characteristics of the devices based on the distribution of charge carriers, obtained from the solution of the Poisson equation and the Continuity equation. The hydrogenated amorphous silicon (a-Si:H) based solar cell, has simulated in the form of one-dimensional single junction p/i/n. The junction structure of a-SiC:H/a-Si:H/a-Si:H designed have the thickness of 0,015 μm/0,550 μm/0,030 μm, respectively. For simulation, the energy gap has considered constant in the p and n layers, whereas the i layer varies according to the empirical data of energy gap obtained from the deposition parameters of filament temperature. Simulations performed using the finite element method supported by FEMLAB software. Based on simulation results, obtained the highest efficiency of 9.35% corresponds to the lowest energy gap data of 1.706 eV for layer i. This appropriates to the filament temperature of 800oC and subsequently used as the optimum deposition parameters of the material. Keyword: Energy gap, efficiency, FEM, solar cell, hydrogenated amorphous silicon


2011 ◽  
Vol 02 (12) ◽  
pp. 1530-1537 ◽  
Author(s):  
Nidhal Mousa Abdul-Ameer ◽  
Moafak Cadim Abdulrida

1981 ◽  
Vol 42 (C4) ◽  
pp. C4-773-C4-777 ◽  
Author(s):  
H. R. Shanks ◽  
F. R. Jeffrey ◽  
M. E. Lowry

2003 ◽  
Vol 762 ◽  
Author(s):  
Guofu Hou ◽  
Xinhua Geng ◽  
Xiaodan Zhang ◽  
Ying Zhao ◽  
Junming Xue ◽  
...  

AbstractHigh rate deposition of high quality and stable hydrogenated amorphous silicon (a-Si:H) films were performed near the threshold of amorphous to microcrystalline phase transition using a very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of hydrogen dilution on optic-electronic and structural properties of these films was investigated by Fourier-transform infrared (FTIR) spectroscopy, Raman scattering and constant photocurrent method (CPM). Experiment showed that although the phase transition was much influenced by hydrogen dilution, it also strongly depended on substrate temperature, working pressure and plasma power. With optimized condition high quality and high stable a-Si:H films, which exhibit σph/σd of 4.4×106 and deposition rate of 28.8Å/s, have been obtained.


Sign in / Sign up

Export Citation Format

Share Document