MODELLING AND EXPERIMENTATION THE ACCRETING MEDIUM IN THE 1D SEMI-INFINITE MOVING SOLID FOR HEAT TRANSFER WITH A NOVEL CONTROL VOLUME CONDUCTANCE METHOD

Author(s):  
LUIS DEL LLANO VIZCAYA ◽  
ALEJANDRO CASTAÑEDA-MIRANDA
2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


2021 ◽  
Author(s):  
AmirAbbas Sartipi

Domed skylights are important architectural design elements to deliver daylight and solar heat into buildings and connect buildings' occupants to outdoors. To increase the energy efficiency of skylighted buildings, domed skylights employ a number of glazing layers forming enclosed spaces. The latter are subject to complex buoyancy-induced convection heat transfer. Currently, existing fenestration design computer tools and building energy simulation programs do not, however, cover such skylights to quantify their energy performance when installed in buildings. his work presents a numerical study on natural laminar convection within concentric and vertically eccentric domed cavities. The edges of domed cavities are assumed adiabatic and the temperature of the interior and exterior surfaces are uniform and constant. The concentric and vertically eccentric domed cavities were studied when heated from inside and heated from outside, respectively. A commercial CFD package employing the control volume approach is used to solve the laminar convective heat transfer within the cavity. The obtained results showed steady flow for small Grashof numbers. For moderate and large Grashof numbers, depending on the gap ratio and the cases of heating from inside or outside, the flow may be steady or transient periodic with a single vortex-cell or multi vortex-cells. The Nusselt number for the case of heated from inside is greater than the case of heated from outside. The numerical results show that the changes in the gap ratio have smaller effect on Nusselt number in high profile domed skylights than lower profile domed skylights.


In this chapter, the non-Darcy model is employed for porous media filled with nanofluid. Both natural and forced convection heat transfer can be analyzed with this model. The governing equations in forms of vorticity stream function are derived and then they are solved via control volume-based finite element method (CVFEM). The effect of Darcy number on nanofluid flow and heat transfer is examined.


The shape of nanoparticles can change the thermal conductivity of nanofluid. So, the effect of shape factor on nanofluid flow and heat transfer has been reported in this chapter. Governing equations are presented in vorticity stream function formulation. Control volume-based finite element method (CVFEM) is utilized to obtain the results. Results indicate that platelet shape has the highest rate of heat transfer.


Author(s):  
Yun-Che Wang ◽  
Jun-Liang Chen ◽  
Ming-Liang Liao ◽  
Chuan Chen ◽  
Yan-Chi Chen ◽  
...  

It has been shown that nanotubes and nanocones are most effective to make indents with large aspect ratios. Detailed studies in the heat transfer processes under the nano-scale indentation, and the accompanying stress distributions are required much attention. In this study, the copper substrate was indented with a nanotube or nano-cone. It is found that nano-cones may make indents with larger aspect ratios than the nanotubes due to the local shell buckling. Time-domain heat transfer and stress analysis was carried out by using a control-volume technique with an atomic spatial resolution, except near the boundaries. The effect of temperatures and stresses on the changes of the microstructures of the substrate will be discussed.


2014 ◽  
Vol 354 ◽  
pp. 227-235
Author(s):  
Marcelo J.S. de Lemos

This article presents a thermo-mechanical approach to investigate heat transfer between solid and fluid phases in a model gasifier. A two-temperature equation approach is applied in addition to a macroscopic model for laminar flow through a porous moving bed. Transport equations are discretized using the control-volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. The effects on inter-phase heat transfer due to variation of medium permeability, thermal conductivity and thermal capacity are analyzed. Results indicate that for smaller medium permeabilities, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios, enhancement of heat transfer between phases is observed.


Sign in / Sign up

Export Citation Format

Share Document