Antitumor Activity of Adenovirally Transduced CD34+ Cells Expressing Membrane-bound TRAIL

Author(s):  
Carmelo Carlo-Stella ◽  
Cristiana Lavazza ◽  
Antonino Carbone ◽  
Alessandro M. Gianni
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 233-233
Author(s):  
Carmelo Carlo-Stella ◽  
Cristiana Lavazza ◽  
Massimo Di Nicola ◽  
Loredana Cleris ◽  
Paolo Longoni ◽  
...  

Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expected to play a key role in anti-cancer therapy due to its high cancer cell-specificity and potent antitumor activity. The clinical development of soluble (s)TRAIL is however hampered by several limitations, includingshort plasma half-life;liver toxicity;tumor cell resistance. To overcome these limitations, we used CD34+ cells transduced with an adenovirus encoding the full-length human TRAIL gene (CD34−TRAIL+) as vehicles for intra-tumor delivery of membrane-bound (m)TRAIL. The mean (±SD) transduction efficiency of CD34+ cells exposed to a multiplicity of infection (MOI) of 500 was 83 ± 8% (range 70 – 95%) with a cell viability ≥85%. In vitro, exposure of the sTRAIL-sensitive KMS-11 cell line to CD34−TRAIL+, but not mock-transduced CD34+ cells consistently resulted in caspase-3, -8, and -9 activation and in PARP cleavage, as well as in potent induction of apoptosis (up to 80% after a 48-hour co-culture). Exposure of the sTRAIL-resistant JVM-2 cell line to CD34−TRAIL+ cells resulted in significant levels of tumor cell death (up to 50% after a 48-hour co-culture). Studies in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice xenografted with KMS-11 cell line showed that CD34−TRAIL+ cells significantly increased the median survival of mice bearing early-stage (92 vs 55 days, P ≤ 0.0001) and advanced-stage (83 vs 55 days, P ≤ 0.0001) disease, as compared with controls. Additionally, CD34−TRAIL+ cells significantly prolonged the median survival of mice xenografted with the sTRAIL-resistant JVM-2 (40 vs 31 days, P ≤ 0.0001) and SU-DHL-4V (38 vs 30 days, P ≤ 0.0001) cell lines. No obvious toxicity was observed upon administration of CD34−TRAIL+ cells. Histological analysis of subcutaneous lymphoma revealed an efficient tumor homing of transduced cells and high level expression of the agonistic TRAIL-R2 receptor by tumor endothelial cells. Following injection of CD34−TRAIL+ cells, but not mock-transduced CD34+ cells, TUNEL staining revealed increasing amounts of apoptotic cells with a 21-fold increase of the apoptotic index at 120 hour post-injection. Additionally, CD34−TRAIL+ cells induced signs of vascular damage leading to a progressive disintegration of the vascular bed, suggesting that tumor endothelial cells represent an early target of CD34−TRAIL+ cells. Our experiments show that:in vitro, the co-culture of tumor cells and CD34−TRAIL+ cells resulted in a marked apoptosis of both sTRAIL-sensitive and sTRAIL-resistant tumor cells;in vivo, injection of CD34−TRAIL+ cells in mice bearing advanced-stage tumors as well as sTRAIL-resistant tumors was associated with a significant prolongation of survival. These results show that CD34−TRAIL+ cells might be an efficient vehicle for mTRAIL delivery to tumors, where they exert a potent antitumor effect possibly mediated by both direct tumor cell killing and indirect vascular-disrupting mechanisms.


2006 ◽  
Vol 0 (0) ◽  
pp. 061115111121001
Author(s):  
Carmelo Carlo-Stella ◽  
Cristiana Lavazza ◽  
Massimo Di Nicola ◽  
Loredana Cleris ◽  
Paolo Longoni ◽  
...  

2006 ◽  
Vol 17 (12) ◽  
pp. 1225-1240 ◽  
Author(s):  
Carmelo Carlo-Stella ◽  
Cristiana Lavazza ◽  
Massimo Di Nicola ◽  
Loredana Cleris ◽  
Paolo Longoni ◽  
...  

2019 ◽  
Author(s):  
James Li ◽  
Xuan Guo ◽  
Hemlata Rana ◽  
Andrea DiFiglia ◽  
Joseph Gleason ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (11) ◽  
pp. 2231-2240 ◽  
Author(s):  
Cristiana Lavazza ◽  
Carmelo Carlo-Stella ◽  
Arianna Giacomini ◽  
Loredana Cleris ◽  
Marco Righi ◽  
...  

Abstract Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor–related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 105 tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell–derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling–stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.


2004 ◽  
Vol 381 (3) ◽  
pp. 629-634 ◽  
Author(s):  
Alessia CALZOLARI ◽  
Silvia DEAGLIO ◽  
Nadia Maria SPOSI ◽  
Eleonora PETRUCCI ◽  
Ornella MORSILLI ◽  
...  

Human TFR2 (transferrin receptor 2) is a membrane-bound protein homologous with TFR1. High levels of TFR2 mRNA were found mainly in the liver and, to a lesser extent, in erythroid precursors. However, although the presence of the TFR2 protein in hepatic cells has been confirmed in several studies, evidence is lacking about the presence of the TFR2 protein in normal erythroid cells. Using two anti-TFR2 monoclonal antibodies, G/14C2 and G/14E8, we have provided evidence that TFR2 protein is not expressed in normal erythroid cells at any stage of differentiation, from undifferentiated CD34+ cells to mature orthochromatic erythroblasts. In contrast, erythroleukaemic cells (K562 cells) exhibited a high level of expression of TFR2 at both the mRNA and the protein level. We can therefore conclude that an elevated expression of TFR2 protein is observed in leukaemic cells, but not in normal erythroblasts. The implications of this observation for the understanding of the phenotypic features of haemochromatosis due to mutation of the TFR2 gene are discussed.


Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
I. E. Stratmann ◽  
C. Ezrin

Surgically removed human pituitary glands as well as pituitary tumors fixed in glutaraldehyde, postfixed in osmium tetroxide, embedded in epon resin, stained with uranyl acetate and lead citrate have been investigated by electron microscopy in order to correlate ultrastructure with functional activity. In the course of this study two distinct types of microfilaments have been identified in the cytoplasm of adenohypophysiocytes.Type I microfilaments (Fig. 1) were found in the cytoplasm of anterior lobe cells of five female subjects with disseminated mammary cancer and two patients with severe diabetes mellitus. The breast cancer patients were treated pre-operatively for various periods of time with different doses of oxysteroids. The microfilaments had an average diameter of JO A, formed parallel bundles, were scattered irregularly in the cytoplasm and were frequently located in the perikaryon. They were not membrane-bound and failed to show any periodicity.


Author(s):  
D.G. Osborne ◽  
L.J. McCormack ◽  
M.O. Magnusson ◽  
W.S. Kiser

During a project in which regenerative changes were studied in autotransplanted canine kidneys, intranuclear crystals were seen in a small number of tubular epithelial cells. These crystalline structures were seen in the control specimens and also in regenerating specimens; the main differences being in size and number of them. The control specimens showed a few tubular epithelial cell nuclei almost completely occupied by large crystals that were not membrane bound. Subsequent follow-up biopsies of the same kidneys contained similar intranuclear crystals but of a much smaller size. Some of these nuclei contained several small crystals. The small crystals occurred at one week following transplantation and were seen even four weeks following transplantation. As time passed, the small crystals appeared to fuse to form larger crystals.


Author(s):  
Patricia L. Jansma

The presence of the membrane bound vesicles or blebs on the intestinal epithelial cells has been demonstrated in a variety of vertebrates such as chicks, piglets, hamsters, and humans. The only invertebrates shown to have these microvillar blebs are two species of f1ies. While investigating the digestive processes of the freshwater microcrustacean, Daphnia magna, the presence of these microvillar blebs was noticed.Daphnia magna fed in a suspension of axenically grown green alga, Chlamydomonas reinhardii for one hour were narcotized with CO2 saturated water. The intestinal tracts were excised in 2% glutaraldehyde in 0.2 M cacodyl ate buffer and then placed in fresh 2% glutaraldehyde for one hour. After rinsing in 0.1 M cacodylate buffer, the sample was postfixed in 2% OsO4, dehydrated with a graded ethanol series, infiltrated and embedded with Epon-Araldite. Thin sections were stained with uranyl acetate and Reynolds lead citrate before viewing with the Philips EM 200.


Sign in / Sign up

Export Citation Format

Share Document