NANOMETER-SCALE SCRATCHING ON THE SINGLE-CRYSTAL SILICON SURFACE USING AN ATOMIC FORCE MICROSCOPE

Author(s):  
Y. ICHIDA ◽  
K. TAKAHASHI
2005 ◽  
Vol 128 (3) ◽  
pp. 723-729 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Noboru Takano ◽  
Daisuke Oka ◽  
Noboru Morita ◽  
Shigeru Yamada ◽  
...  

This paper investigates nanomachining of single-crystal silicon using an atomic force microscope with a diamond-tip cantilever. To enable nanomachining of silicon, a nanomachining cantilever with a pyramidal diamond tip was developed using a combination of photolithography and hot-filament chemical vapor deposition. Nanomachining experiments on silicon using the cantilever are demonstrated under various machining parameters. The silicon surface can be removed with a rate of several tens to hundreds of nanometers in ductile mode, and the cantilever shows superior wear resistance. The experiments demonstrate successful nanomachining of single-crystal silicon.


2015 ◽  
Vol 1088 ◽  
pp. 779-782
Author(s):  
Xiao Jing Yang ◽  
Yong Li ◽  
Wei Xing Zhang

The experiment of cutting mechanical properties of single crystal silicon surface in the micro-nanoscale is researched using nanoindenter and atomic force microscopy. The result of the experiment shows that: in the constant load, the impact of different scratching velocity for single crystal silicon surface scratch groove width and chip accumulation volume are not big; but the cutting force and friction coefficient are not increases with the scratching velocity increases; when the scratching speed is certain, the size of load has a greater impact on the cutting mechanical properties of single crystal silicon surface, with the increase of the load, the cutting force increases, but the cutting force is not linearly growth.


2006 ◽  
Vol 48 (10) ◽  
pp. 2016-2020 ◽  
Author(s):  
M. V. Gomoyunova ◽  
D. E. Malygin ◽  
I. I. Pronin

1990 ◽  
Vol 112 (3) ◽  
pp. 567-572 ◽  
Author(s):  
T. Miyamoto ◽  
R. Kaneko ◽  
Y. Ando

Atomic force microscopy is used to investigate the interaction force between the sharp tips of various elastic solids and four different samples. The samples are: thin film disk media coated with functional liquid lubricant having diol end groups, unlubricated disk media, a single-crystal silicon wafer, and Au evaporated onto single-crystal silicon. Relationships between the interaction and static friction force of disk media and a taper flat type head slider are examined. The interaction force between a disk medium coated with a functional liquid lubricant greater than 11.0 nm thick and tungsten tips with radii of 5 μm-100 μm is caused by the functional liquid lubricant meniscus, as pointed out by McFarlane and Tabor. However, at a thickness of several nanometers, the interaction force has a lower value than that for lubricant thicknesses above 11.0 nm. The interaction force has a minimum value of 0.4 μN at the functional liquid lubricant thickness of 2.0 nm. Mean interaction forces of the tungsten, Al2O3 − TiC and Si3N4 tips on a disk medium coated with a 2.0-nm-thick functional liquid lubricant are less than 0.1 times those for an unlubricated disk medium. Interaction forces of the SiC tip show very low values, even when the disk medium is unlubricated. Static friction force between a thin-film disk medium and a head or sphere is dependent on the interaction force between the medium and a tip that is made of the same material as the head or sphere. The use of an atomic force microscope (AFM), may allow the surface structure to be more thoroughly analyzed.


Sign in / Sign up

Export Citation Format

Share Document