Experimental Study on the Surface Cutting Mechanical Properties of Single Crystal Silicon in Micro-Nano Scale

2015 ◽  
Vol 1088 ◽  
pp. 779-782
Author(s):  
Xiao Jing Yang ◽  
Yong Li ◽  
Wei Xing Zhang

The experiment of cutting mechanical properties of single crystal silicon surface in the micro-nanoscale is researched using nanoindenter and atomic force microscopy. The result of the experiment shows that: in the constant load, the impact of different scratching velocity for single crystal silicon surface scratch groove width and chip accumulation volume are not big; but the cutting force and friction coefficient are not increases with the scratching velocity increases; when the scratching speed is certain, the size of load has a greater impact on the cutting mechanical properties of single crystal silicon surface, with the increase of the load, the cutting force increases, but the cutting force is not linearly growth.

1994 ◽  
Vol 332 ◽  
Author(s):  
Bharat Bhushan ◽  
Vilas N. Koinkar ◽  
J. Ruan

ABSTRACTWe have used atomic force microscopy (AFM) and friction force microscopy (FFM) techniques for microtribological studies including microscale friction, nanowear, nanoscratching and nanoindentation hardness measurements. The microscale friction studies on a gold ruler sample demonstrated that the local variation in friction correspond to a change of local surface slope, and this correlation is explained by a friction mechanism. Directionality effect is also observed as the sample was scanned in either direction. Nanoscratching, nanowear and nanoindentation hardness studies were performed on single-crystal silicon. Wear rates of single crystal silicon are approximately constant for various loads and test duration. Nanoindentation hardness studies show that AFM technique allows the hardness measurements of surface monolayers and ultra thin films in multilayered structures at very shallow depths and low loads. The AFM technique has also been shown to be useful for nanofabrication.


2005 ◽  
Vol 128 (3) ◽  
pp. 723-729 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Noboru Takano ◽  
Daisuke Oka ◽  
Noboru Morita ◽  
Shigeru Yamada ◽  
...  

This paper investigates nanomachining of single-crystal silicon using an atomic force microscope with a diamond-tip cantilever. To enable nanomachining of silicon, a nanomachining cantilever with a pyramidal diamond tip was developed using a combination of photolithography and hot-filament chemical vapor deposition. Nanomachining experiments on silicon using the cantilever are demonstrated under various machining parameters. The silicon surface can be removed with a rate of several tens to hundreds of nanometers in ductile mode, and the cantilever shows superior wear resistance. The experiments demonstrate successful nanomachining of single-crystal silicon.


2000 ◽  
Vol 649 ◽  
Author(s):  
A.A. Volinsky ◽  
J. Vella ◽  
I.S. Adhihetty ◽  
V. Sarihan ◽  
L. Mercado ◽  
...  

ABSTRACTCopper films of different thicknesses of 0.2, 0.5, 1 and 2 microns were electroplated on top of the adhesion-promoting barrier layers on <100> single crystal silicon wafers. Controlled Cu grain growth was achieved by annealing films in vacuum.The Cu film microstructure was characterized using Atomic Force Microscopy and Focused Ion Beam Microscopy. Elastic modulus of 110 to 130 GPa and hardness of 1 to 1.6 GPa were measured using the continuous stiffness option (CSM) of the Nanoindenter XP. Thicker films appeared to be softer in terms of the lower modulus and hardness, exhibiting a classical Hall-Petch relationship between the yield stress and grain size. Lower elastic modulus of thicker films is due to the higher porosity and partially due to the surface roughness. Comparison between the mechanical properties of films on the substrates obtained by nanoindentation and tensile tests of the freestanding Cu films is made.


1997 ◽  
Vol 12 (12) ◽  
pp. 3219-3224 ◽  
Author(s):  
Vilas N. Koinkar ◽  
Bharat Bhushan

Atomic force microscopy (AFM) is commonly used for microwear/machining studies of materials at very light loads. To understand material removal mechanism on the microscale, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were conducted on the microworn/machined single-crystal silicon. SEM studies of micromachined single-crystal silicon indicate that at light loads material is removed by ploughing. Fine particulate debris is observed at light loads. At higher loads, cutting type and ribbon-like debris were observed. This debris is loose and can be easily removed by scanning with an AFM tip. TEM images of a wear mark generated at 40 μN show bend contours in and around the wear mark, suggesting that there are residual stresses. Dislocations, cracks, or any special features were not observed inside or outside wear marks using plan-view TEM. Therefore, material is mostly removed in a brittle manner or by chipping without major dislocation activity, crack formation, and phase transformation at the surface. However, presence of ribbon-like debris suggests some plastic deformation as well.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document