Nanomachining of Silicon Surface Using Atomic Force Microscope With Diamond Tip

2005 ◽  
Vol 128 (3) ◽  
pp. 723-729 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Noboru Takano ◽  
Daisuke Oka ◽  
Noboru Morita ◽  
Shigeru Yamada ◽  
...  

This paper investigates nanomachining of single-crystal silicon using an atomic force microscope with a diamond-tip cantilever. To enable nanomachining of silicon, a nanomachining cantilever with a pyramidal diamond tip was developed using a combination of photolithography and hot-filament chemical vapor deposition. Nanomachining experiments on silicon using the cantilever are demonstrated under various machining parameters. The silicon surface can be removed with a rate of several tens to hundreds of nanometers in ductile mode, and the cantilever shows superior wear resistance. The experiments demonstrate successful nanomachining of single-crystal silicon.

2015 ◽  
Vol 1088 ◽  
pp. 779-782
Author(s):  
Xiao Jing Yang ◽  
Yong Li ◽  
Wei Xing Zhang

The experiment of cutting mechanical properties of single crystal silicon surface in the micro-nanoscale is researched using nanoindenter and atomic force microscopy. The result of the experiment shows that: in the constant load, the impact of different scratching velocity for single crystal silicon surface scratch groove width and chip accumulation volume are not big; but the cutting force and friction coefficient are not increases with the scratching velocity increases; when the scratching speed is certain, the size of load has a greater impact on the cutting mechanical properties of single crystal silicon surface, with the increase of the load, the cutting force increases, but the cutting force is not linearly growth.


2006 ◽  
Vol 48 (10) ◽  
pp. 2016-2020 ◽  
Author(s):  
M. V. Gomoyunova ◽  
D. E. Malygin ◽  
I. I. Pronin

2012 ◽  
Vol 576 ◽  
pp. 46-50 ◽  
Author(s):  
M.A. Mahmud ◽  
A.K.M. Nurul Amin ◽  
M.D. Arif

This paper presents the thorough experimental analysis on high speed end milling of single crystal silicon using diamond coated tools. Experiments were conducted on CNC milling machine. The design of the experiments was based on the central composite design (CCD) technique of Design Expert software. Response Surface Methodology (RSM) was used to develop mathematical imperial model to establish a correlation between machining parameters (cutting speed, feed and depth of cut) and machined surface roughness in high speed end milling of single crystal silicon using 2mm diameter diamond coated tools. The optimum machining parameters were determined using the optimization tool of Design Expert software based on the desirability function. Finally, confirmation tests were performed to validate the developed model.


Sign in / Sign up

Export Citation Format

Share Document