Geometric parameters design and elastic shear buckling strength research of the type 2400 corrugated steel webs

Author(s):  
Y Wang ◽  
D Z Shi ◽  
S Wan
2018 ◽  
Vol 8 (12) ◽  
pp. 2457 ◽  
Author(s):  
Kangjian Wang ◽  
Man Zhou ◽  
Mostafa Hassanein ◽  
Jitao Zhong ◽  
Hanshan Ding ◽  
...  

Despite the construction of several curved prestressed concrete girder bridges with corrugated steel webs (CSWs) around the world; their shear behavior has seldom been investigated. Accordingly, this paper substitutes the lack of available information on the global elastic shear buckling of a plane curved corrugated steel web (PCCSW) in a curved girder. This is based on the equilibrium equations and geometric equations in the elastic theory of classical shells, combined with the constitutive relation of orthotropic shells. Currently, the global elastic shear buckling process of the PCCSW in a curved girder is studied, for the first time in literature, with an equivalent orthotropic open circular cylindrical shell (OOCCS) model. The governing differential equation of global elastic shear buckling of the PCCSW, as well as its buckling strength, is derived by considering the orthotropic characteristics of a corrugated steel web, the rational trigonometric displacement modes, Galerkin’s method and variational principles. Additionally, the accuracy of the proposed theoretical formula is verified by comparison with finite element (FE) results. Moreover, the expressions of the inner or outer folded angle and radius of curvature are given by the cosine theorem of the trigonometric function and inverse trigonometric function. Subsequently, parametric analysis of the shear buckling behavior of the PCCSW is carried out by considering the cases where the radius of curvature is constant or variable. This parametric analysis highlights the effects of web dimensions, height-to-thickness ratio, aspect ratios of longitudinal and inclined panels, corrugation height, curvature radius and folded angles on the elastic shear buckling strength. As a result, this study provides a theoretical reference for the design and application of composite curved girders with CSWs.


Author(s):  
Dae-Hyeok Kim ◽  
Sang-Yun Han ◽  
Jung-Hun Kim ◽  
Young-Jong Kang

2015 ◽  
Vol 94 ◽  
pp. 167-176 ◽  
Author(s):  
Stanislav Kitarovic ◽  
Jerolim Andric ◽  
Karlo Piric

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


2011 ◽  
Vol 255-260 ◽  
pp. 1311-1314
Author(s):  
Lan Duan ◽  
Li Zheng ◽  
Chun Sheng Wang ◽  
Jing Yu Hu

This paper evaluates the shear resistance of hybrid I-beams fabricated by high performance steel and conventional steel. A number of hybrid I-beams are modeled and analyzed to determine their shear failure mechanism characteristics, considering parameters of web slenderness (hw/tw), frame action from end-stiffeners, ratio of flange width to web depth (bf/hw) and panel numbers. The analyses conclude that, in shear resistance calculation, plate beam with inter and slender webs often fail in inelastic or elastic shear buckling while ultimate shear resistance of compact webs is given by the shear strength of the material. What’s more, more rigid stiffeners provide more fixity to flange plates and increase the post-buckling resistance of plate beam. For plate beam with several panels, the shear stress at the ultimate load is similar. Finally, the I-beams with larger flange width to web depth ratio would develop larger shear strengths and then shear deformation cause formation of plastic hinges.


2014 ◽  
Vol 501-504 ◽  
pp. 2509-2514
Author(s):  
Jian Hua Shao ◽  
Wen He

The mechanical properties of low-yield-point (LYP) steel and its advantages as seismic steel are introduced in this paper. The theoretical equations of inelastic shear buckling stress at the pure shear action for the LYP steel are derived from unified theory of plastic buckling. The relationship curve of inelastic shear buckling strength and width-thickness ratio of LYP steel shear wall at the different height-width ratios of plate is given through iteration calculation process. The effectiveness of theoretical equations used for calculating the buckling stress is verified by experimental results.


Sign in / Sign up

Export Citation Format

Share Document