Data Mining, Neural Networks and Support Vector Machine

Author(s):  
Seyed Jalaleddin Mousavirad ◽  
Hossein Ebrahimpour-Komleh

Medical diagnosis is a most important problem in medical data mining. The possible errors of a physician can reduce with the help of data mining techniques. The goal of this chapter is to analyze and compare predictive data mining techniques in the medical diagnosis. To this purpose, various data mining techniques such as decision tree, neural networks, support vector machine, and lazy modelling are considered. Results show data mining techniques can considerably help a physician.


2016 ◽  
pp. 923-954
Author(s):  
Seyed Jalaleddin Mousavirad ◽  
Hossein Ebrahimpour-Komleh

Medical diagnosis is a most important problem in medical data mining. The possible errors of a physician can reduce with the help of data mining techniques. The goal of this chapter is to analyze and compare predictive data mining techniques in the medical diagnosis. To this purpose, various data mining techniques such as decision tree, neural networks, support vector machine, and lazy modelling are considered. Results show data mining techniques can considerably help a physician.


2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2021 ◽  
Vol 15 (6) ◽  
pp. 1812-1819
Author(s):  
Azita Yazdani ◽  
Ramin Ravangard ◽  
Roxana Sharifian

The new coronavirus has been spreading since the beginning of 2020 and many efforts have been made to develop vaccines to help patients recover. It is now clear that the world needs a rapid solution to curb the spread of COVID-19 worldwide with non-clinical approaches such as data mining, enhanced intelligence, and other artificial intelligence techniques. These approaches can be effective in reducing the burden on the health care system to provide the best possible way to diagnose and predict the COVID-19 epidemic. In this study, data mining models for early detection of Covid-19 in patients were developed using the epidemiological dataset of patients and individuals suspected of having Covid-19 in Iran. C4.5, support vector machine, Naive Bayes, logistic regression, Random Forest, and k-nearest neighbor algorithm were used directly on the dataset using Rapid miner to develop the models. By receiving clinical signs, this model diagnosis the risk of contracting the COVID-19 virus. Examination of the models in this study has shown that the support vector machine with 93.41% accuracy is more efficient in the diagnosis of patients with COVID-19 pandemic, which is the best model among other developed models. Keywords: COVID-19, Data mining, Machine Learning, Artificial Intelligence, Classification


2008 ◽  
Vol 381-382 ◽  
pp. 439-442
Author(s):  
Qi Wang ◽  
Zhi Gang Feng ◽  
K. Shida

Least squares support vector machine (LS-SVM) combined with niche genetic algorithm (NGA) are proposed for nonlinear sensor dynamic modeling. Compared with neural networks, the LS-SVM can overcome the shortcomings of local minima and over fitting, and has higher generalization performance. The sharing function based niche genetic algorithm is used to select the LS-SVM parameters automatically. The effectiveness and reliability of this method are demonstrated in two examples. The results show that this approach can escape from the blindness of man-made choice of LS-SVM parameters. It is still effective even if the sensor dynamic model is highly nonlinear.


2013 ◽  
Vol 295-298 ◽  
pp. 644-647 ◽  
Author(s):  
Yu Kai Yao ◽  
Hong Mei Cui ◽  
Ming Wei Len ◽  
Xiao Yun Chen

SVM (Support Vector Machine) is a powerful data mining algorithm, and is mainly used to finish classification or regression tasks. In this literature, SVM is used to conduct disease prediction. We focus on integrating with stratified sample and grid search technology to improve the classification accuracy of SVM, thus, we propose an improved algorithm named SGSVM: Stratified sample and Grid search based SVM. To testify the performance of SGSVM, heart-disease data from UCI are used in our experiment, and the results show SGSVM has obvious improvement in classification accuracy, and this is very valuable especially in disease prediction.


2018 ◽  
Vol 184 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Gal Amit ◽  
Hanan Datz

Abstract We present here for the first time a fast and reliable automatic algorithm based on artificial neural networks for the anomaly detection of a thermoluminescence dosemeter (TLD) glow curves (GCs), and compare its performance with formerly developed support vector machine method. The GC shape of TLD depends on numerous physical parameters, which may significantly affect it. When integrated into a dosimetry laboratory, this automatic algorithm can classify ‘anomalous’ (having any kind of anomaly) GCs for manual review, and ‘regular’ (acceptable) GCs for automatic analysis. The new algorithm performance is then compared with two kinds of formerly developed support vector machine classifiers—regular and weighted ones—using three different metrics. Results show an impressive accuracy rate of 97% for TLD GCs that are correctly classified to either of the classes.


Sign in / Sign up

Export Citation Format

Share Document