COMPARING SHAPE TRAJECTORIES OF BIOLOGICAL SOFT TISSUES IN THE SIZE-AND-SHAPE SPACE

Author(s):  
V. VARANO ◽  
S. GABRIELE ◽  
L. TERESI ◽  
I. DRYDEN ◽  
P. E. PUDDU ◽  
...  
2010 ◽  
Vol 42 (02) ◽  
pp. 331-346
Author(s):  
H. Le ◽  
D. Barden

Using the geometry of the Kendall shape space, in this paper we study the shape, as well as the size-and-shape, of the projection of a configuration after it has been rotated and, when the given configuration lies in a Euclidean space of an arbitrary dimension, we obtain expressions for the induced distributions of such shapes when the rotation is uniformly distributed.


2018 ◽  
Author(s):  
Wataru Yano ◽  
Naoko Egi ◽  
Tomo Takano ◽  
Naomichi Ogihara

AbstractIn order to investigate craniofacial size and three-dimensional shape variations independently in the Japanese macaque (Macaca fuscata) we used a geometric morphometries technique. A total of 55 specimens were CT scanned to generate a three-dimensional model of each cranium, and 57 landmarks were digitized to analyze the craniofacial shape variation in the Japanese macaque. The results showed that four intra-specific groups, consisting of two subspecies and the two sexes, differed in both size and shape space. In size, the cranium of the Macaca fuscata yakui (MFY) was smaller than that of Macaca fuscata fuscata (MFF) in both sexes, and female crania were smaller than male crania in both subspecies. Shape sexual dimorphisms in both subspecies were detected in the first axis of principal component analysis and were related to a relatively broad orbit, smaller neurocranium, enlarged snout, and broader temporal fossa in males. The shape differences between subspecies showed different features than those between sexes. Male subspecies shape differences were detected in the first and third axes, while those for females were in the first and second axes. Subspecies shape differences common to both sexes were a narrower orbit, relatively small neurocranium, longer snout, and postorbital constriction in MFY. Male MFY was specifically characterized by a more anterior and superior direction of snout protrusion. In contrast, female MFY showed an inferior direction of snout protrusion. Female MFY also had a taller orbit. With regard to the relationship between size and shape differences, shape sexual dimorphism for each subspecies was positively associated with size difference, but there was no such association between subspecies in either sex. Size does not seem to play an important role in subspeciation of Macaca fuscata.


2010 ◽  
Vol 42 (2) ◽  
pp. 331-346
Author(s):  
H. Le ◽  
D. Barden

Using the geometry of the Kendall shape space, in this paper we study the shape, as well as the size-and-shape, of the projection of a configuration after it has been rotated and, when the given configuration lies in a Euclidean space of an arbitrary dimension, we obtain expressions for the induced distributions of such shapes when the rotation is uniformly distributed.


1998 ◽  
Vol 21 (4) ◽  
pp. 469-470
Author(s):  
Giorgio Bonmassar ◽  
Eric L. Schwartz

Under shift, caused for example by eye movement, or by relative movement of the subject or object of perception, the cortical representation undergoes very large changes in “size” and “shape.” Space-variance of cortical representation rules out models that fundamentally require linear interpolation between shifted patterns (e.g., Edelman's model) or rigid shift of an invariant retinal stimulus corresponding to shift at the cortex (e.g., the shifter theory of van Essen). Recently, a computational solution of “quasi-shift” invariance for space-variant mappings has been constructed (Bonmassar & Schwartz 1997a; 1997b).


2017 ◽  
Vol 124 (3) ◽  
pp. 384-408 ◽  
Author(s):  
Valerio Varano ◽  
Stefano Gabriele ◽  
Luciano Teresi ◽  
Ian L. Dryden ◽  
Paolo E. Puddu ◽  
...  

Author(s):  
H.J.G. Gundersen

Previously, all stereological estimation of particle number and sizes were based on models and notoriously gave biased results, were very inefficient to use and difficult to justify. For all references to old methods and a direct comparison with unbiased methods see recent reviews.The publication in 1984 of the DISECTOR, the first unbiased stereological probe for sampling and counting 3—D objects irrespective of their size and shape, signalled the new era in stereology — and give rise to a number of remarkably simple and efficient techniques based on its distinct property: It is the only known way to obtain an unbiased sample of 3-D objects (cells, organelles, etc). The principle is simple: within a 2-D unbiased frame count or sample only cells which are not hit by a parallel plane at a known, small distance h.The area of the frame and h must be known, which might sometimes in itself be a problem, albeit usually a small one. A more severe problem may arise because these constants are known at the scale of the fixed, embedded and sectioned tissue which is often shrunken considerably.


Author(s):  
C.A. Baechler ◽  
W. C. Pitchford ◽  
J. M. Riddle ◽  
C.B. Boyd ◽  
H. Kanagawa ◽  
...  

Preservation of the topographic ultrastructure of soft biological tissues for examination by scanning electron microscopy has been accomplished in the past by using lengthy epoxy infiltration techniques, or dehydration in ethanol or acetone followed by air drying. Since the former technique requires several days of preparation and the latter technique subjects the tissues to great stress during the phase change encountered during air-drying, an alternate rapid, economical, and reliable method of surface structure preservation was developed. Turnbill and Philpott had used a fluorocarbon for the critical point drying of soft tissues and indicated the advantages of working with fluids having both moderately low critical pressures as well as low critical temperatures. Freon-116 (duPont) which has a critical temperature of 19. 7 C and a critical pressure of 432 psi was used in this study.


Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Author(s):  
C J R Sheppard

The confocal microscope is now widely used in both biomedical and industrial applications for imaging, in three dimensions, objects with appreciable depth. There are now a range of different microscopes on the market, which have adopted a variety of different designs. The aim of this paper is to explore the effects on imaging performance of design parameters including the method of scanning, the type of detector, and the size and shape of the confocal aperture.It is becoming apparent that there is no such thing as an ideal confocal microscope: all systems have limitations and the best compromise depends on what the microscope is used for and how it is used. The most important compromise at present is between image quality and speed of scanning, which is particularly apparent when imaging with very weak signals. If great speed is not of importance, then the fundamental limitation for fluorescence imaging is the detection of sufficient numbers of photons before the fluorochrome bleaches.


Sign in / Sign up

Export Citation Format

Share Document