ENERGY-EFFICIENT NODE SCHEDULING MODELS IN SENSOR NETWORKS WITH ADJUSTABLE RANGES

2005 ◽  
Vol 16 (01) ◽  
pp. 3-17 ◽  
Author(s):  
JIE WU ◽  
SHUHUI YANG

In this paper, we study the problem of maintaining sensing coverage by keeping a small number of active sensor nodes and using a small amount of energy consumption in wireless sensor networks. This paper extends a result from 22 where only uniform sensing range among all sensors is used. We adopt an approach that allows non-uniform sensing ranges for different sensors. As opposed to the uniform sensing range node scheduling model in 22, two new energy-efficient models with different sensing ranges are proposed. Our objective is to minimize the overlapped sensing area of sensor nodes, thus to reduce the overall energy consumption by sensing and communication to prolong the whole network's life time, and at the same time to achieve the high ratio of coverage. Extensive simulation is conducted to verify the effectiveness of our node scheduling models.

2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


Author(s):  
Wajeeha Aslam ◽  
Muazzam A. Khan ◽  
M. Usman Akram ◽  
Nazar Abbas Saqib ◽  
Seungmin Rho

Wireless sensor networks are greatly habituated in widespread applications but still yet step behind human intelligence and vision. The main reason is constraints of processing, energy consumptions and communication of image data over the sensor nodes. Wireless sensor network is a cooperative network of nodes called motes. Image compression and transmission over a wide ranged sensor network is an emerging challenge with respect to battery, life time constraints. It reduces communication latency and makes sensor network efficient with respect to energy consumption. In this paper we will have an analysis and comparative look on different image compression techniques in order to reduce computational load, memory requirements and enhance coding speed and image quality. Along with compression, different transmission methods will be discussed and analyzed with respect to energy consumption for better performance in wireless sensor networks.


2019 ◽  
Vol 29 (09) ◽  
pp. 2050141 ◽  
Author(s):  
Muhammed Enes Bayrakdar

In this paper, a monitoring technique based on the wireless sensor network is investigated. The sensor nodes used for monitoring are developed in a simulation environment. Accordingly, the structure and workflow of wireless sensor network nodes are designed. Time-division multiple access (TDMA) protocol has been chosen as the medium access technique to ensure that the designed technique operates in an energy-efficient manner and packet collisions are not experienced. Fading channels, i.e., no interference, Ricean and Rayleigh, are taken into consideration. Energy consumption is decreased with the help of ad-hoc communication of sensor nodes. Throughput performance for different wireless fading channels and energy consumption are evaluated. The simulation results show that the sensor network can quickly collect medium information and transmit data to the processing center in real time. Besides, the proposed technique suggests the usefulness of wireless sensor networks in the terrestrial areas.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 178
Author(s):  
Komal Memon ◽  
Nafeesa Bohra ◽  
Faisal K Shaikh

There is a great demand of an Underwater Sensor Networks (UWSNs) in applications of water monitoring and offshore exploration. In such applications, network comprises of multiple sensor nodes which are deployed at different locations and depths of water. Sensor nodes perform collective tasks such as data collection and data transmission to other nodes or Base Station (BS). The bottom nodes are located at depth of water, and are not able to communicate directly with the surface level nodes, these nodes require multi-hop communication with appropriate routing protocol. Therefore, an energy efficient routing protocols are used for such scenarios, which is necessary as well as challenging task. As sensors are battery operated devices, which are really problematic to recharge or replace. The error and propagation path delays are high in acoustic channels therefore underwater communication is much effected. Realizing the circumstances, more attention has been given to compare energy efficient routing protocols which comparatively consume low energy and achieve high throughput. This paper, comprises of analysis and comparison of existing UWSN based efficient energy routing protocols. Based upon the analysis and comparison, VBF and DBR have been proposed that fulfill the requirements. The analysis is done on NS-2 and for comparison, the performance metrics which are evaluated are: Packet delivery Ratio (PDR), energy consumption, throughput and average End to End (E2E) delay. The results show that VBF protocol consume very large amount of energy as compared to DBR protocol. Whereas DBR protocol have characteristics like low energy consumption, minimum delay high PDR and high throughput than VBF protocol.  


Author(s):  
Femi A. Aderohunmu ◽  
Jeremiah D. Deng ◽  
Martin Purvis

While wireless sensor networks (WSN) are increasingly equipped to handle more complex functions, in-network processing still requires the battery-powered sensors to judiciously use their constrained energy so as to prolong the elective network life time. There are a few protocols using sensor clusters to coordinate the energy consumption in a WSN, but how to deal with energy heterogeneity remains a research question. The authors propose a modified clustering algorithm with a three-tier energy setting, where energy consumption among sensor nodes is adaptive to their energy levels. A theoretical analysis shows that the proposed modifications result in an extended network stability period. Simulation has been conducted to evaluate the new clustering algorithm against some existing algorithms under different energy heterogeneity settings, and favourable results are obtained especially when the energy levels are significantly imbalanced.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1515 ◽  
Author(s):  
Alma Rodríguez ◽  
Carolina Del-Valle-Soto ◽  
Ramiro Velázquez

The usage of wireless sensor devices in many applications, such as in the Internet of Things and monitoring in dangerous geographical spaces, has increased in recent years. However, sensor nodes have limited power, and battery replacement is not viable in most cases. Thus, energy savings in Wireless Sensor Networks (WSNs) is the primary concern in the design of efficient communication protocols. Therefore, a novel energy-efficient clustering routing protocol for WSNs based on Yellow Saddle Goatfish Algorithm (YSGA) is proposed. The protocol is intended to intensify the network lifetime by reducing energy consumption. The network considers a base station and a set of cluster heads in its cluster structure. The number of cluster heads and the selection of optimal cluster heads is determined by the YSGA algorithm, while sensor nodes are assigned to its nearest cluster head. The cluster structure of the network is reconfigured by YSGA to ensure an optimal distribution of cluster heads and reduce the transmission distance. Experiments show competitive results and demonstrate that the proposed routing protocol minimizes the energy consumption, improves the lifetime, and prolongs the stability period of the network in comparison with the stated of the art clustering routing protocols.


2019 ◽  
Vol 8 (3) ◽  
pp. 5540-5548

Wireless sensor networks(WSNs) are used to monitor the environment where the networks are deployed. The Lifetime of WSNs can be increased by energy-efficient or energy balancing algorithms. Balanced energy consumption among all nodes is the main issue. In this paper, a new energy-efficient unequal clustering routing protocol (EEUCR) has been presented. In this protocol, the area of the network is divided into the number of rings of unequal size and each ring is further divided into a number of clusters. Rings nearer to the base station(BS) have a smaller area and the area of rings keeps on increasing as the distance from BS increases. This helps to balance the energy consumption among the sensor nodes. The nodes with heterogeneous energy are deployed in the network. Nodes nearer to the base station have higher energy as compared to farther nodes. Static clustering is used but cluster heads(CHs) are not fixed and are elected on the basis of the remaining energy of the sensor node. Simulation results are compared with existing protocols and show improvement in energy consumption, which, in turn, increases the network lifetime of WSN and also balance the energy consumption of sensor node


Managing the energy is very challenging in wireless multimedia sensor networks because of heavy consumption of energy by the sensor nodes. Multimedia data transmission contains heavy energy consumption operations such as sensing, aggregating, compressing and transferring the data from one sensor node to neighbour sensor node. Many routing techniques considers residual energy of a neighbour node to forward the data to that node. But, in reality a critical situation occurs where required energy is greater than individual neighbour node’s residual energy. In this situation it is not possible to select any neighbour node as a data forwarder. The proposed greedy knapsack based energy efficient routing algorithm (GKEERA) can address this critical situation very efficiently. And also a Two-in-One Mobile Sink (TIOMS) is used to provide the power supply and to collect the data from a battery drained sensor node. GKEERA improves the life time of a network by balancing the energy consumption between the neighbour nodes.


Sign in / Sign up

Export Citation Format

Share Document