Energy Efficient Image Compression and Transmission in WSN

Author(s):  
Wajeeha Aslam ◽  
Muazzam A. Khan ◽  
M. Usman Akram ◽  
Nazar Abbas Saqib ◽  
Seungmin Rho

Wireless sensor networks are greatly habituated in widespread applications but still yet step behind human intelligence and vision. The main reason is constraints of processing, energy consumptions and communication of image data over the sensor nodes. Wireless sensor network is a cooperative network of nodes called motes. Image compression and transmission over a wide ranged sensor network is an emerging challenge with respect to battery, life time constraints. It reduces communication latency and makes sensor network efficient with respect to energy consumption. In this paper we will have an analysis and comparative look on different image compression techniques in order to reduce computational load, memory requirements and enhance coding speed and image quality. Along with compression, different transmission methods will be discussed and analyzed with respect to energy consumption for better performance in wireless sensor networks.

2019 ◽  
Vol 29 (09) ◽  
pp. 2050141 ◽  
Author(s):  
Muhammed Enes Bayrakdar

In this paper, a monitoring technique based on the wireless sensor network is investigated. The sensor nodes used for monitoring are developed in a simulation environment. Accordingly, the structure and workflow of wireless sensor network nodes are designed. Time-division multiple access (TDMA) protocol has been chosen as the medium access technique to ensure that the designed technique operates in an energy-efficient manner and packet collisions are not experienced. Fading channels, i.e., no interference, Ricean and Rayleigh, are taken into consideration. Energy consumption is decreased with the help of ad-hoc communication of sensor nodes. Throughput performance for different wireless fading channels and energy consumption are evaluated. The simulation results show that the sensor network can quickly collect medium information and transmit data to the processing center in real time. Besides, the proposed technique suggests the usefulness of wireless sensor networks in the terrestrial areas.


Author(s):  
Femi A. Aderohunmu ◽  
Jeremiah D. Deng ◽  
Martin Purvis

While wireless sensor networks (WSN) are increasingly equipped to handle more complex functions, in-network processing still requires the battery-powered sensors to judiciously use their constrained energy so as to prolong the elective network life time. There are a few protocols using sensor clusters to coordinate the energy consumption in a WSN, but how to deal with energy heterogeneity remains a research question. The authors propose a modified clustering algorithm with a three-tier energy setting, where energy consumption among sensor nodes is adaptive to their energy levels. A theoretical analysis shows that the proposed modifications result in an extended network stability period. Simulation has been conducted to evaluate the new clustering algorithm against some existing algorithms under different energy heterogeneity settings, and favourable results are obtained especially when the energy levels are significantly imbalanced.


2019 ◽  
Vol 8 (4) ◽  
pp. 8666-8672

Today we can’t think communication systems without support of advancements made in computer technologies whereby it is a major achievement to realize the convergence of the technologies providing highly pervasive system. The communication systems evolved essentially from wired communications and grew to the current wireless communications. Wireless sensor networks do not need large deployment infrastructure. Here each individual sensor node acts as a part of the overall infrastructure. All nodes are connected in multi-hop mesh topology. In this flexible mesh architecture, we easily add new nodes and scale up to achieve control and monitoring over larger region. The sensor network protocols and algorithms possess self-organizing capabilities. Wireless sensor network communication systems mostly being deployed in open fields are physically accessible to adversaries and are more vulnerable due to being remotely managed, densely deployed, low power (battery life time), low communication bandwidth, low processing capability, and use of only the broadcasting mechanism to communicate with other nodes[1].


2021 ◽  
Vol 10 (6) ◽  
pp. 3353-3360
Author(s):  
Aso Ahmed Majeed ◽  
Baban Ahmed Mahmood ◽  
Ahmed Chalak Shakir

The research domain for wireless sensor networks (WSN) has been extensively conducted due to innovative technologies and research directions that have come up addressing the usability of WSN under various schemes. This domain permits dependable tracking of a diversity of environments for both military and civil applications. The key management mechanism is a primary protocol for keeping the privacy and confidentiality of the data transmitted among different sensor nodes in WSNs. Since node's size is small; they are intrinsically limited by inadequate resources such as battery life-time and memory capacity. The proposed secure and energy saving protocol (SESP) for wireless sensor networks) has a significant impact on the overall network life-time and energy dissipation. To encrypt sent messsages, the SESP uses the public-key cryptography’s concept. It depends on sensor nodes' identities (IDs) to prevent the messages repeated; making security goals- authentication, confidentiality, integrity, availability, and freshness to be achieved. Finally, simulation results show that the proposed approach produced better energy consumption and network life-time compared to LEACH protocol; sensors are dead after 900 rounds in the proposed SESP protocol. While, in the low-energy adaptive clustering hierarchy (LEACH) scheme, the sensors are dead after 750 rounds.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Subramaniam Sumithra ◽  
T. Aruldoss Albert Victoire

Due to large dimension of clusters and increasing size of sensor nodes, finding the optimal route and cluster for large wireless sensor networks (WSN) seems to be highly complex and cumbersome. This paper proposes a new method to determine a reasonably better solution of the clustering and routing problem with the highest concern of efficient energy consumption of the sensor nodes for extending network life time. The proposed method is based on the Differential Evolution (DE) algorithm with an improvised search operator called Diversified Vicinity Procedure (DVP), which models a trade-off between energy consumption of the cluster heads and delay in forwarding the data packets. The obtained route using the proposed method from all the gateways to the base station is comparatively lesser in overall distance with less number of data forwards. Extensive numerical experiments demonstrate the superiority of the proposed method in managing energy consumption of the WSN and the results are compared with the other algorithms reported in the literature.


Wireless Sensor Networks (WSN), is an intensive area of research which is often used for monitoring, sensing and tracking various environmental conditions. It consists of a number of sensor nodes that are powered with fixed low powered batteries. These batteries cannot be changed often as most of the WSN will be in remote areas. Life time of WSN mainly depends on the energy consumed by the sensor nodes. In order to prolong the networks life time, the energy consumption has to be reduced. Different energy saving schemes has been proposed over the years. Data compression is one among the proposed schemes that can scale down the amount of data transferred between nodes and results in energy saving. In this paper, an attempt is made to analyze the performances of three different data compression algorithms viz. Light Weight Temporal Compression (LTC), Piecewise Linear Approximation with Minimum Number of Line Segments (PLAMLIS) and Univariate Least Absolute Selection and Shrinkage Operator (ULASSO). These algorithms are tested on standard univariate datasets and evaluated using assessment metrics like Mean Square Error (MSE), compression ratio and energy consumption. The results show that the ULASSO algorithm outperforms other algorithms in all three metrics and contributes more towards energy consumption


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Siti Ummi Masruroh, M.Sc. , Feri Fahrianto, M.Sc

The function of clustering protocols to minimize the energy consumption of each node, and reduce number of transmission in wireless sensor network. However, most existing clustering protocols consume large amounts of energy, incurred by cluster formation overhead and fixed-level clustering, particularly when sensor nodes are densely deployed in wireless sensor networks. In this paper, we propose Pegasis Routing based on Ring Model, which is energy consumption in the system and prolong the network lifetime, with multiple clustes will decrease the network latency. Keywords: Wireless sensor networks (WSN), PEGASIS, lifetime


Author(s):  
Femi A. Aderohunmu ◽  
Jeremiah D. Deng ◽  
Martin Purvis

While wireless sensor networks (WSN) are increasingly equipped to handle more complex functions, in-network processing still requires the battery-powered sensors to judiciously use their constrained energy so as to prolong the elective network life time. There are a few protocols using sensor clusters to coordinate the energy consumption in a WSN, but how to deal with energy heterogeneity remains a research question. The authors propose a modified clustering algorithm with a three-tier energy setting, where energy consumption among sensor nodes is adaptive to their energy levels. A theoretical analysis shows that the proposed modifications result in an extended network stability period. Simulation has been conducted to evaluate the new clustering algorithm against some existing algorithms under different energy heterogeneity settings, and favourable results are obtained especially when the energy levels are significantly imbalanced.


2013 ◽  
Vol 284-287 ◽  
pp. 2021-2026
Author(s):  
Won Hyuck Choi ◽  
Min Seok Jie

The development of wireless communication and electronic technology leads to wireless sensor networks in various fields. Wireless sensor networks can exchange the data that generated from near environment field observation between other sensor nodes. Generally, Wireless sensor networks consist of multi sensor nodes and one or more sink nodes The sensor sensing data that nodes detected transmit from sensor networks to base station and deliver to users through internet. However sensor networks are restricted in the aspects of communication, processing data and energy consumption. Because of the low capacity batteries with devices of sensor networks, it is important to increase the lifespan operation life of sensor nodes by using energy efficiently. In this kind of sensor nodes, the energy consumption for message sending and receiving is very important for the maintenance of sensor nodes. In the existing static routing method, it consumes more energy for the maintenance of sensor network than dynamic routing method because data transmits repeatedly when the sensor data begin to spread. In this study, based on the difference in the cycle of information gathering in accordance with the characteristic of the sensor in sensor network and the cycle of demands from the sink in accordance with the characteristic of application layer, dynamic routing of wireless sensor network is proposed which actively responds to its various needs.


Sign in / Sign up

Export Citation Format

Share Document