A STUDY ON RULE EXTRACTION FROM SEVERAL COMBINED NEURAL NETWORKS

2001 ◽  
Vol 11 (03) ◽  
pp. 247-255 ◽  
Author(s):  
GUIDO BOLOGNA

The problem of rule extraction from neural networks is NP-hard. This work presents a new technique to extract "if-then-else" rules from ensembles of DIMLP neural networks. Rules are extracted in polynomial time with respect to the dimensionality of the problem, the number of examples, and the size of the resulting network. Further, the degree of matching between extracted rules and neural network responses is 100%. Ensembles of DIMLP networks were trained on four data sets in the public domain. Extracted rules were on average significantly more accurate than those extracted from C4.5 decision trees.

2019 ◽  
Vol 64 (6) ◽  
pp. 669-675 ◽  
Author(s):  
Abdulaziz Alsayyari

Abstract A new technique for electronic fetal monitoring (EFM) using an efficient structure of neural networks based on the Legendre series is presented in this paper. Such a structure is achieved by training a Legendre series-based neural network (LNN) to classify the different fetal states based on recorded cardiotocographic (CTG) data sets given by others. These data sets consist of measurements of fetal heart rate (FHR) and uterine contraction (UC). The applied LNN utilizes a Legendre series expansion for the input vectors and, hence, has the capability to produce explicit equations describing multi-input multi-output systems. Simulations of the proposed technique in EFM demonstrate its high efficiency. Training the LNN requires a few number of iterations (5–10 epochs). The applied technique makes the classification of the fetal state available through equations combining the trained LNN weights and the current measured CTG record. A comparison of performance between the proposed LNN and other popular neural network techniques such as the Volterra neural network (VNN) in EFM is provided. The comparison shows that, the LNN outperforms the VNN in case of less computational requirements and fast convergence with a lower mean square error.


2021 ◽  
Vol 5 (9 (113)) ◽  
pp. 82-90
Author(s):  
Lyudmila Dobrovska ◽  
Olena Nosovets

The problem of developing universal classifiers of biomedical data, in particular those that characterize the presence of a large number of parameters, inaccuracies and uncertainty, is urgent. Many studies are aimed at developing methods for analyzing these data, among them there are methods based on a neural network (NN) in the form of a multilayer perceptron (MP) using GA. The question of the application of evolutionary algorithms (EA) for setting up and learning the neural network is considered. Theories of neural networks, genetic algorithms (GA) and decision trees intersect and penetrate each other, new developed neural networks and their applications constantly appear. An example of a problem that is solved using EA algorithms is considered. Its goal is to develop and research a classifier for the diagnosis of breast cancer, obtained by combining the capabilities of the multilayer perceptron using the genetic algorithm (GA) and the CART decision tree. The possibility of improving the classifiers of biomedical data in the form of NN based on GA by applying the process of appropriate preparation of biomedical data using the CART decision tree has been established. The obtained results of the study indicate that these classifiers show the highest efficiency on the set of learning and with the minimum reduction of Decision Trees; increasing the number of contractions usually degrades the simulation result. On two datasets on the test set, the simulation accuracy was »83–87 %. The experiments carried out have confirmed the effectiveness of the proposed method for the synthesis of neural networks and make it possible to recommend it for practical use in processing data sets for further diagnostics, prediction, or pattern recognition


2017 ◽  
Vol 16 (06) ◽  
pp. 1707-1727 ◽  
Author(s):  
Morteza Mashayekhi ◽  
Robin Gras

Decision trees are examples of easily interpretable models whose predictive accuracy is normally low. In comparison, decision tree ensembles (DTEs) such as random forest (RF) exhibit high predictive accuracy while being regarded as black-box models. We propose three new rule extraction algorithms from DTEs. The RF[Formula: see text]DHC method, a hill climbing method with downhill moves (DHC), is used to search for a rule set that decreases the number of rules dramatically. In the RF[Formula: see text]SGL and RF[Formula: see text]MSGL methods, the sparse group lasso (SGL) method, and the multiclass SGL (MSGL) method are employed respectively to find a sparse weight vector corresponding to the rules generated by RF. Experimental results with 24 data sets show that the proposed methods outperform similar state-of-the-art methods, in terms of human comprehensibility, by greatly reducing the number of rules and limiting the number of antecedents in the retained rules, while preserving the same level of accuracy.


2020 ◽  
Vol 9 (1) ◽  
pp. 7-10
Author(s):  
Hendry Fonda

ABSTRACT Riau batik is known since the 18th century and is used by royal kings. Riau Batik is made by using a stamp that is mixed with coloring and then printed on fabric. The fabric used is usually silk. As its development, comparing Javanese  batik with riau batik Riau is very slowly accepted by the public. Convolutional Neural Networks (CNN) is a combination of artificial neural networks and deeplearning methods. CNN consists of one or more convolutional layers, often with a subsampling layer followed by one or more fully connected layers as a standard neural network. In the process, CNN will conduct training and testing of Riau batik so that a collection of batik models that have been classified based on the characteristics that exist in Riau batik can be determined so that images are Riau batik and non-Riau batik. Classification using CNN produces Riau batik and not Riau batik with an accuracy of 65%. Accuracy of 65% is due to basically many of the same motifs between batik and other batik with the difference lies in the color of the absorption in the batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning   ABSTRAK   Batik Riau dikenal sejak abad ke 18 dan digunakan oleh bangsawan raja. Batik Riau dibuat dengan menggunakan cap yang dicampur dengan pewarna kemudian dicetak di kain. Kain yang digunakan biasanya sutra. Seiring perkembangannya, dibandingkan batik Jawa maka batik Riau sangat lambat diterima oleh masyarakat. Convolutional Neural Networks (CNN) merupakan kombinasi dari jaringan syaraf tiruan dan metode deeplearning. CNN terdiri dari satu atau lebih lapisan konvolutional, seringnya dengan suatu lapisan subsampling yang diikuti oleh satu atau lebih lapisan yang terhubung penuh sebagai standar jaringan syaraf. Dalam prosesnya CNN akan melakukan training dan testing terhadap batik Riau sehingga didapat kumpulan model batik yang telah terklasi    fikasi berdasarkan ciri khas yang ada pada batik Riau sehingga dapat ditentukan gambar (image) yang merupakan batik Riau dan yang bukan merupakan batik Riau. Klasifikasi menggunakan CNN menghasilkan batik riau dan bukan batik riau dengan akurasi 65%. Akurasi 65% disebabkan pada dasarnya banyak motif yang sama antara batik riau dengan batik lainnya dengan perbedaan terletak pada warna cerap pada batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning


2009 ◽  
Vol 60 (12) ◽  
pp. 3051-3059 ◽  
Author(s):  
Hossam Adel Zaqoot ◽  
Abdul Khalique Ansari ◽  
Mukhtiar Ali Unar ◽  
Shaukat Hyat Khan

Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs — Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight’s dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.


Author(s):  
Peter Grabusts

This paper describes a method of rule extraction from trained artificial neural networks. The statement of the problem is given. The aim of rule extraction procedure and suitable neural networks for rule extraction are outlined. The RULEX rule extraction algorithm is discussed that is based on the radial basis function (RBF) neural network. The extracted rules can help discover and analyze the rule set hidden in data sets. The paper contains an implementation example, which is shown through standalone IRIS data set.


2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2000 ◽  
Vol 10 (04) ◽  
pp. 267-279 ◽  
Author(s):  
JOHN G. CARNEY ◽  
PÁDRAIG CUNNINGHAM

In this paper, we investigate how the level of diversity amongst individual neural networks in a bagged ensemble can significantly influence overall ensemble generalization performance. We propose a new technique that tunes this diversity so that ensemble generalization performance is optimized and evaluate its performance on benchmark regression data-sets.


2012 ◽  
Vol 22 (01) ◽  
pp. 77-87 ◽  
Author(s):  
M. A. H. AKHAND ◽  
K. MURASE

An ensemble performs well when the component classifiers are diverse yet accurate, so that the failure of one is compensated for by others. A number of methods have been investigated for constructing ensemble in which some of them train classifiers with the generated patterns. This study investigates a new technique of training pattern generation. The method alters input feature values of some patterns using the values of other patterns to generate different patterns for different classifiers. The effectiveness of neural network ensemble based on the proposed technique was evaluated using a suite of 25 benchmark classification problems, and was found to achieve performance better than or competitive with related conventional methods. Experimental investigation of different input values alteration techniques finds that alteration with pattern values in the same class is better for generalization, although other alteration techniques may offer more diversity.


2009 ◽  
Vol 19 (02) ◽  
pp. 67-89 ◽  
Author(s):  
M. A. H. AKHAND ◽  
MD. MONIRUL ISLAM ◽  
KAZUYUKI MURASE

Ensembles with several classifiers (such as neural networks or decision trees) are widely used to improve the generalization performance over a single classifier. Proper diversity among component classifiers is considered an important parameter for ensemble construction so that failure of one may be compensated by others. Among various approaches, data sampling, i.e., different data sets for different classifiers, is found more effective than other approaches. A number of ensemble methods have been proposed under the umbrella of data sampling in which some are constrained to neural networks or decision trees and others are commonly applicable to both types of classifiers. We studied prominent data sampling techniques for neural network ensembles, and then experimentally evaluated their effectiveness on a common test ground. Based on overlap and uncover, the relation between generalization and diversity is presented. Eight ensemble methods were tested on 30 benchmark classification problems. We found that bagging and boosting, the pioneer ensemble methods, are still better than most of the other proposed methods. However, negative correlation learning that implicitly encourages different networks to different training spaces is shown as better or at least comparable to bagging and boosting that explicitly create different training spaces.


Sign in / Sign up

Export Citation Format

Share Document