PHYSICAL QUANTITATIVE ANALYSIS IN IN-AIR PIXE

2007 ◽  
Vol 17 (01n02) ◽  
pp. 1-10 ◽  
Author(s):  
K. SERA ◽  
K. TERASAKI ◽  
J. ITOH ◽  
Y. SAITOH ◽  
S. FUTATSUGAWA

A physical method of quantitative analysis for in-air PIXE has been established. Among the three parameters required for performing physical analysis, X-ray production cross sections were recalculated by using the effective energy of the proton beam after losing its energy through a Kapton foil and in air. Detection efficiencies of the Si ( Li ) detector have been determined according to our method established for in vacuum system, where effects of absorption of X-rays in air are incorporated into the detection efficiencies. As a result, it is confirmed that the present method gives us accurate results in the analyses of standard samples as well as actual samples such as soil and ash. It becomes possible to perform quantitative analysis of various samples by optimizing the measuring conditions depending on the samples.

2020 ◽  
Vol 108 (5) ◽  
pp. 415-423
Author(s):  
Esra Cinan ◽  
Bünyamin Aygün ◽  
M. I. Sayyed ◽  
Yüksel Özdemir

AbstractL X-ray intensity ratios for CeO2, Sm2(SO4)3, Ho2O3, and Yb2O3 compounds were experimentally investigated. The measurements were gauged following excitation by 59.54 keV γ-rays from a 100 mCi 241Am radioactive annular source at different temperatures in situ. Temperature change occurred between 50 °C and 400 °C. L X-ray emission spectra were obtained by using a solid-state Si(Li) X-ray detector. L X-ray production cross sections, intensity ratios, and full-width half maximum (FWHM) values for the compounds were determined by evaluating the emission spectra varying with the temperature. According to the results obtained, it was observed that Lβ1 X-rays were less influenced in comparison with Lα X-rays while Lα X-rays were also less influenced in comparison with Lβ2 X-rays.


2017 ◽  
Vol 890 ◽  
pp. 223-226 ◽  
Author(s):  
Rıdvan Durak ◽  
Ferdi Akman ◽  
Abdulhalik Karabulut

The Ll, Lα and Lβ X-ray production cross sections for Pr, Nd, Sm, Eu, Gd and Tb elements were determined using a reflection geometry. The excitation was performed with a 241Am radioactive annular source and the L X-rays emitted from targets were counted with a high-resolution Si (Li) detector. The experimental values were compared with other available experimental results and theoretical data. An agreement is observed between the measured and other experimental results or theoretical data.


2013 ◽  
Vol 23 (01n02) ◽  
pp. 55-67 ◽  
Author(s):  
K. Sera ◽  
S. Goto ◽  
C. Takahashi ◽  
Y. Saitoh

In this paper, a two-detector measuring system in in-air PIXE system composed of two Si(Li) detectors has been developed for simultaneous measurement of low- and high-Z elements. In order to improve detection sensitivity of the detector for low energy region, a new device which is attached at the tip of the detector has been designed. It is made of acryl and has a thin end on which a 1.5 μm-thick Mylar film is stuck. As a result, it exhibited a miraculous effect in improving detection sensitivity at low energies and it became possible to detect K X-rays of aluminium. In order to perform quantitative analysis in in-air system, we have measured detection efficiencies for the two Si(Li) detectors including the effect of X-ray absorption in air on the basis of the method that we developed. Concerning the beam energy at the target and corresponding X-ray production cross-sections, the same values as were reported in the previous paper were applicable since conditions of irradiating system were unchanged. It was confirmed that the new method allows us to quantitatively analyze all the elements heavier than aluminum and to obtain mostly the same results as those by in-vacuum PIXE for various kinds of samples. Accuracy of analysis was also confirmed by using a standard material.


1999 ◽  
Vol 09 (01n02) ◽  
pp. 1-10 ◽  
Author(s):  
K. ISHII ◽  
T. SATOH ◽  
S. MATSUYAMA ◽  
H. YAMAZAKI ◽  
Y. TOKAI ◽  
...  

An aluminum target was bombarded with 1.5 MeV protons and continuous x-rays were measured at the angles of 45°, 90° and 135° with respect to the beam direction. By investigating the shape of the x-ray energy spectrum, it was recognized that, the continuous x-rays below 12 keV are atomic bremsstrahlung (AB) and those of above 12 keV are nuclear bremsstrahlung (NB), and AB and NB are mingled in the energy region of around 12 keV The x-ray energy dependence of angular distributions presented well a change from the process of AB to that of NB in the continuous x-ray spectrum. Interference between AB and NB were discussed on the basis of PWBA theory. Continuous x-ray production cross sections were calculated on the basis of PWBA BEA and a semi-classical theory and compared with the experimental results. The theoretical prediction reproduced well the experimental cross sections over the wide range of 6 orders in magnitude and of 2 keV – 35 keV in the energy except for the energy region mingled with AB and NB. The ratio of the theoretical cross sections to the experimental ones showed an interference effect between AB and NB in their mingled region.


1998 ◽  
Vol 08 (04) ◽  
pp. 235-251
Author(s):  
K. SERA ◽  
K. ISHII ◽  
H. ORIHARA

Partial M-x-ray production cross sections, which have not been well investigated up to the present, were measured in detail for six heavy lanthanides; Dy , Ho , Er , Tm , Yb and Lu . As a result, it is found that intensities of Mα,β lines, which are dominant among all the M-x-rays, and (M1-N2, M1-N3, M2-N4) lines agree well with those predicted by theory. However, clear discrepancy is found for Mζ and Mγ x-rays. Although it was pointed out by a PIXE analysis with a high-resolution crystal spectrometer that special attention must be paid for an analysis of Mζ and Mγ lines, it is found from the present work that it is possible to perform quantitative analysis using Mα,β lines.


1973 ◽  
Vol 17 ◽  
pp. 445-456
Author(s):  
R. F. Chaturvedi ◽  
J. L. Duggan ◽  
T. J. Gray ◽  
C. C. Sachtleben ◽  
J. Lin

AbstractAbsolute K-shell ionization cross sections were measured for Ti, Co, Ge, Rb, and Sn for incident oxygen ions from 16-44 MeV. The x-rays were measured with a high resolution Si(Li) detector (166 eV at 5.9 keV). All of the data represents cross section measurements for thin targets. The measured cross sections for these elements are compared to the theoretical predictions of the Binary Encounter Approximation (BEA). Kα/Kβratios and energy shifts were also extracted from the data. The experimental data are compared to measured cross sections for other elements to give an overview of the systematics for oxygen ion induced x-ray production cross sections in this energy range. Some comment will also be given in regard to the use of oxygen ions to measure the parameters associated with ion implanted semiconductors.


2011 ◽  
Vol 21 (03n04) ◽  
pp. 67-73
Author(s):  
P. BALOURIA ◽  
I. M. GOVIL ◽  
B. P. MOHANTY ◽  
M. L. GARG ◽  
K. ISHII

We have calculated the production cross-sections of continuous X-rays for commonly used thin polymer films on the basis of the theories of quasi-free electron bremsstrahlung (QFEB), secondary electron bremsstrahlung (SEB), atomic bremsstrahlung (AB) and nuclear bremsstrahlung (NB). These results are compared with that of experimental one. We found that SEB is the main contributing factor and the contribution of QFEB, AB and NB is negligible. This work would facilitate choice among available polymer materials and lay down well-defined standard data against which new candidates might be judged.


1992 ◽  
Vol 02 (03) ◽  
pp. 197-209
Author(s):  
KEIZO ISHII

When a solid or gaseous target is bombarded with heavy charged particles, inner shell electrons of target atoms are ionized and characteristic x rays are produced. We can easily observe these x rays with a Si(Li) detector and derive inner-shell ionization cross section from the x-ray production cross sections. In this paper, we make a review of x-ray production, inner shell ionization and Reading’s theorem in light ion·atom collisions. This theorem is one of the most important ones in the ion·atom collision physics and permits precise discussion on comparison between experimental inner-shell ionization cross sections obtained with a Si(Li) detector and the calculations based on usual theories where the incident particle is assumed to interact with only one electron in an atom and the presence of other electrons is ignored.


Author(s):  
J Miranda

The emission of characteristic X-rays induced by proton impact is a phenomenon known since the first half of the 20th century. Its more widely known application is the analytical technique Particle Induced X-ray Emission (PIXE). Several models have been developed to calculate, first, ionization cross sections and then the subsequent X-ray production cross sections. However, to carry out the comparisons of these predictions with experimental data it is necessary to use atomic parameters databases (fluorescence yields, Coster-Kronig transition probabilities, emission rates) that also have experimental uncertainties. In this work it is demonstrated how these values do not allow to decide which model describes more accurately the cross sections, due to a final “theoretical uncertainty” obtained through the propagation of the original uncertainties.


1972 ◽  
Vol 16 ◽  
pp. 102-110
Author(s):  
C. J. Umbarger ◽  
R. C. Bearse ◽  
D. A. Close ◽  
J. J. Malanify

AbstractProtons from a 3 MV Van de Graaff have been used to produce characteristic x-rays from 21 elements spanning the periodic table. Absolute Kα and Lα x-ray production cross sections have been determined, allowing one to calculate sensitivities for any given sample, detector geometry, and proton beam parameters. Elemental detectability limits are discussed assuming various backings (e.g., mylar, kapton, etc.) and matrix materials. The large number of available small proton accelerators throughout the United States promises wide applicability of this technique to environmental and biomedical analysis.


Sign in / Sign up

Export Citation Format

Share Document