Compact Low-Power Analog-to-Digital Converters using Multi-State Spatial Wavefunction-Switched (SWS) FETs

2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450005
Author(s):  
Murali Lingalugari ◽  
John Chandy ◽  
Faquir Jain ◽  
El-Sayed Hasaneen ◽  
Evan Heller

In this paper, we propose a new architecture for analog-to-digital converters (ADCs) using multistate spatial wavefunction-switched field-effect transistors (SWSFETs). SWSFETs are multiple quantum coupled well devices, where the wells are stacked vertically and the electron wavefunction switches from one well to another with the change in gate voltage. Quantum mechanical simulations of 3-well InGaAs-AlInAs SWSFET structures are presented. The designs and simulations of 2-bit and 3-bit ADCs using SWSFETs result in low power consumption and reduced device count which improves the speed of the data conversion.

2020 ◽  
Vol 3 (1) ◽  
pp. 014009 ◽  
Author(s):  
Yiwei Duan ◽  
Bowen Zhang ◽  
Shizan Zou ◽  
Chuqi Fang ◽  
Qijing Wang ◽  
...  

2011 ◽  
Vol 20 (03) ◽  
pp. 653-668 ◽  
Author(s):  
SUPRIYA KARMAKAR ◽  
JOHN A CHANDY ◽  
FAQUIR C. JAIN

This paper describes design of analog-to-digital converters (ADCs) and digital-to-analog onverters (DACs) using field-effect transistors that exhibit three states in their transfer characteristics. An intermediate state " i " has been observed in the transfer characteristics (drain current-gate voltage) of FETs when two layers of cladded quantum dots (e.g. SiO x - Si and GeO x - Ge ) are introduced in the gate region above the tunnel insulator between the source and drain regions. Three states in such a transistor, defined as quantum dot gate field-effect transistor (QDG-FET) include two stable states (ON and OFF) and a low-current saturation state " i " in its transfer characteristics. QDG-FETs are quite different in construction than nanodot based nonvolatile memories, reported in the literature, where the quantum dots are sandwiched between a tunnel gate insulator and a relatively thick control gate dielectric. In this paper we present analog-to-digital converters (ADCs) using comparators based on QDG-FETs. A comparator is designed with fewer three-state QDG-FETs. Designs of 3-bit ADC, using 25 nm QDG-FETs, are simulated showing a signal-to-noise ratio (SNR) of ~18. In addition, the R-2R ladder problem, encountered in conventional analog-to digital converters (ADCs), is absent in QDG-FET based architecture.


2019 ◽  
Vol 30 (1) ◽  
pp. 1906131 ◽  
Author(s):  
Chuanlai Ren ◽  
Gaokuo Zhong ◽  
Qun Xiao ◽  
Congbing Tan ◽  
Ming Feng ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 535
Author(s):  
Antonia Silvestri ◽  
Nicola Di Trani ◽  
Giancarlo Canavese ◽  
Paolo Motto Ros ◽  
Leonardo Iannucci ◽  
...  

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.


2019 ◽  
Vol 25 (7) ◽  
pp. 455-462 ◽  
Author(s):  
Anne S. Verhulst ◽  
William G. Vandenberghe ◽  
Daniele Leonelli ◽  
Rita Rooyackers ◽  
Anne Vandooren ◽  
...  

2021 ◽  
Author(s):  
Марина Евгеньевна Сычева ◽  
Светлана Анатольевна Микаева

В статье рассмотрены основные типы CNTFET транзисторов, изготовленных на углеродных нанотрубках. Представлена классификация, особенности конструкции и основные этапы технологии изготовления CNTFET транзисторов. Полевые транзисторы из углеродных нанотрубок (CNTFET) являются перспективными наноразмерными устройствами для реализации высокопроизводительных схем с очень плотной и низкой мощностью. The article considers the main types of CNTFET transistors made on carbon nanotubes. The classification, design features and the main stages of the CNTFET transistor manufacturing technology are presented. Carbon nanotube field effect transistors (CNTFET) are promising nanoscale devices for implementing high-performance circuits with very dense and low power.


Sign in / Sign up

Export Citation Format

Share Document