PULSED LOW POWER CMOS

1994 ◽  
Vol 05 (02) ◽  
pp. 159-177 ◽  
Author(s):  
THAD GABARA

A simple CMOS circuit technique called PPS (Pulsed Power Supply) CMOS is used to reduce the power dissipation of Conventional 0.9 μm CMOS by 10X when operated at 32 MHz. Combinational and sequential logic can utilize this technique including the I/O (input/output) buffers. Thus, PPS CMOS offers a full chip solution for low power dissipation CMOS. In addition, several advantages occur in this new circuit technique: (1) low power signal propagation through several gates in series can occur during each evaluation cycle; (2) crowbar current does not occur; (3) additional placed devices, i.e. bipolar, diodes, JFETs are not required to generate this low power capability; (4) the Conventional CMOS process is used to fabricate the circuit; (5) the same physical layout can be used either as a PPS CMOS circuit or as a Conventional CMOS circuit; (6) the device count is the same as that of Conventional CMOS; (7) PPS CMOS uses quasistatic logic levels; (8) capacitive coupling is used to store and restore the contents of a memory cell; (9) the parasitic diodes of the MOS devices are used to improve the noise margin of the circuit; (10) PPS CMOS can easily hold a static state and have the same low power dissipation properties of data inactive Conventional CMOS.

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Min Yoon ◽  
Jee-Youl Ryu

We present a low-noise small-area 24 GHz CMOS radar sensor for automotive collision avoidance. This sensor is based on direct-conversion pulsed-radar architecture. The proposed circuit is implemented using TSMC 0.13 μm RF (radio frequency) CMOS (fT/fmax=120/140 GHz) technology, and it is powered by a 1.5 V supply. This circuit uses transmission lines to reduce total chip size instead of real bulky inductors for input and output impedance matching. The layout techniques for RF are used to reduce parasitic capacitance at the band of 24 GHz. The proposed sensor has low cost and low power dissipation since it is realized using CMOS process. The proposed sensor showed the lowest noise figure of 2.9 dB and the highest conversion gain of 40.2 dB as compared to recently reported research results. It also showed small chip size of 0.56 mm2, low power dissipation of 39.5 mW, and wide operating temperature range of −40 to +125°C.


2014 ◽  
Vol 513-517 ◽  
pp. 3844-3849
Author(s):  
Hai Peng Zhang ◽  
Shao Dan Yang ◽  
Ya Dong Yin ◽  
De Jun Wang

An implementation method of a power supply on-chip (PSOC) was presented for low power digital integrated circuit (IC) applications in this paper. The PSOC consists of a main power supply and a backup low power dissipation power supply, which is featured of micro-standby power consumption and fast switching. The PSOC was designed according to the design rules of SMIC 0.18μm CMOS process and validated both through simulation and silicon verification. The active area is about 0.035mm2 in fact. Post-layout simulation results indicate that output voltage of the PSOC is regulable in the range of 1.52~2.5V as input voltage is in the range of 2.0~3.6V, in which output of the main power supply is regulable in the range of 1.75~ 1.84V. The maximum quiescent current of main power supply is 16.23μA, while the maximum quiescent current of standby power is only 0.552μA. Experimental results indicate that the PSOC is capable of providing energy for the system digital IC implementation. Its power switching time is less than 148μs at the load capacitance of CL =56nF.


2014 ◽  
Vol 4 (3) ◽  
pp. 9-13
Author(s):  
M. Balaji ◽  
◽  
B. Keerthana ◽  
K. Varun ◽  
◽  
...  

2015 ◽  
Vol 43 (7) ◽  
pp. 430
Author(s):  
Tomofumi KISE ◽  
Hitoshi SHIMIZU ◽  
Hideyuki NASU

2016 ◽  
Vol 37 (1) ◽  
pp. 33-37
Author(s):  
李辉 LI Hui ◽  
都继瑶 DU Ji-yao ◽  
曲轶 QU Yi ◽  
张晶 ZHANG Jing ◽  
李再金 LI Zai-jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document