A REVISED STOCHASTIC OPTIMAL VELOCITY MODEL CONSIDERING THE VELOCITY GAP WITH A PRECEDING VEHICLE

2011 ◽  
Vol 22 (09) ◽  
pp. 1005-1014 ◽  
Author(s):  
KEIZO SHIGAKI ◽  
JUN TANIMOTO ◽  
AYA HAGISHIMA

The stochastic optimal velocity (SOV) model, which is a cellular automata model, has been widely used because of its good reproducibility of the fundamental diagram, despite its simplicity. However, it has a drawback: in SOV, a vehicle that is temporarily stopped takes a long time to restart. This study proposes a revised SOV model that suppresses this particular defect; the basic concept of this model is derived from the car-following model, which considers the velocity gap between a particular vehicle and the preceding vehicle. A series of simulations identifies the model parameters and clarifies that the proposed model can reproduce the three traffic phases: free, jam, and even synchronized phases, which cannot be achieved by the conventional SOV model.

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Tao Wang ◽  
Jing Zhang ◽  
Guangyao Li ◽  
Keyu Xu ◽  
Shubin Li

In the traditional optimal velocity model, safe distance is usually a constant, which, however, is not representative of actual traffic conditions. This paper attempts to study the impact of dynamic safety distance on vehicular stream through a car-following model. Firstly, a new car-following model is proposed, in which the traditional safety distance is replaced by a dynamic term. Then, the phase diagram in the headway, speed, and sensitivity spaces is given to illustrate the impact of a variable safe distance on traffic flow. Finally, numerical methods are conducted to examine the performance of the proposed model with regard to two aspects: compared with the optimal velocity model, the new model can suppress traffic congestion effectively and, for different safety distances, the dynamic safety distance can improve the stability of vehicular stream. Simulation results suggest that the new model is able to enhance traffic flow stability.


2018 ◽  
Vol 2018 ◽  
pp. 1-26 ◽  
Author(s):  
Hongxing Zhao ◽  
Ruichun He ◽  
Changxi Ma

An extended car-following model is proposed on the basis of experimental analysis to improve the performance of the traditional car-following model and simulate a microscopic car-following behaviour at signalised intersections. The new car-following model considers vehicle gather and dissipation. Firstly, the parameters of optimal velocity, generalised force and full velocity difference models are calibrated by measured data, and the problems and causes of the three models are analysed with a realistic trajectory simulation as an evaluation criterion. Secondly, an extended car-following model based on the full optimal velocity model is proposed by considering the vehicle gather and dissipation. The parameters of the new car-following model are calibrated by the measured data, and the model is compared with comparative models on the basis of isolated point data and the entire car-following process. Simulation results show that the optimal velocity, generalised force, and full velocity difference models cannot effectively simulate a microscopic car-following behaviour at signalised intersections, whereas the new car-following model can avoid a collision and has a high fit degree for simulating the measured data of the car-following behaviour at signalised intersections.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
JingJing Ye ◽  
KePing Li ◽  
XueDong Jiang

We propose a new traffic model which is based on the traditional OV (optimal velocity) car-following model. Here, some realistic factors are regarded as uncertain quantity, such as the headway distance. Our aim is to analyze and discuss the stability of car-following model under the constraint of uncertain factors. Then, according to the principle of expected value in fuzzy theory, an improved OV traffic model is constructed. Simulation results show that our proposed model can avoid collisions effectively under uncertain environment, and its stability can also be improved. Moreover, we discuss its stability as some parameters change, such as the relaxation time.


Author(s):  
Xiaoqin Li ◽  
Yanyan Zhou ◽  
Guanghan Peng

Traffic interruption is one of the important factors resulting in traffic jam. Therefore, a new optimal velocity model is established involving the traffic interruption probability for self-expected velocity. Linear stable condition and mKdV equation are deduced with regard to the self-interruption probability of the current optimal velocity from linear stable analysis and nonlinear analysis, respectively. Moreover, numerical simulation reveals that the traffic self-interruption probability of the current optimal velocity can increase traffic stability, which certifies that the traffic self-interruption probability of the current optimal velocity plays important influences on traffic system.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Zhang ◽  
Shengrui Zhang ◽  
Bei Zhou ◽  
Shuaiyang Jiao ◽  
Yan Huang

We investigate the dynamic performance of traffic flow using a modified optimal velocity car-following model. In the car-following scenarios, the following vehicle must continuously adjust the following distance to the preceding vehicle in real time. A new optimal velocity function incorporating the desired safety distance instead of a preset constant is presented first to describe the abovementioned car-following behavior dynamically. The boundary conditions of the new optimal velocity function are theoretically analyzed. Subsequently, we propose an improved car-following model by combining the heterogeneity of driver’s sensitivity based on the new optimal velocity function and previous car-following model. The stability criterion of the improved model is obtained through the linear analysis method. Finally, numerical simulation is performed to explore the effect of the desired safety distance and the heterogeneity of driver’s sensitivity on the traffic flow. Results show that the proposed model has considerable effects on improving traffic stability and suppressing traffic congestion. Furthermore, the proposed model is compatible with the heterogeneity of driver’s sensitivity and can enhance the average velocity of traffic flow compared with the conventional model. In conclusion, the dynamic performance of traffic flow can be improved by considering the desired safety distance and the heterogeneity of driver’s sensitivity in the car-following model.


2011 ◽  
Vol 25 (08) ◽  
pp. 1111-1120 ◽  
Author(s):  
JIANPING MENG ◽  
TAO SONG ◽  
LIYUN DONG ◽  
SHIQIANG DAI

There is a common time parameter for representing the sensitivity or the lag (response) time of drivers in many car-following models. In the viewpoint of traffic psychology, this parameter could be considered as the perception–response time (PRT). Generally, this parameter is set to be a constant in previous models. However, PRT is actually not a constant but a random variable described by the lognormal distribution. Thus the probability can be naturally introduced into car-following models by recovering the probability of PRT. For demonstrating this idea, a specific stochastic model is constructed based on the optimal velocity model. By conducting simulations under periodic boundary conditions, it is found that some important traffic phenomena, such as the hysteresis and phantom traffic jams phenomena, can be reproduced more realistically. Especially, an interesting experimental feature of traffic jams, i.e., two moving jams propagating in parallel with constant speed stably and sustainably, is successfully captured by the present model.


2008 ◽  
Vol 19 (09) ◽  
pp. 1321-1335 ◽  
Author(s):  
WEN-XING ZHU ◽  
LEI JIA

We proposed a new car-following model named as total generalized optimal velocity model (TGOVM) based on the analysis of the previous models. TGOVM is superior to the previous models in stabilizing the uniform traffic flow by considering all the front influencing factors: headways, relative velocities, and interactions. The linear analysis result showed its superiority to the GOVM, FLOVM, and FLRVM. The nonlinear analysis method is adopted to analyze this model, which described by a differential-difference equation. The modified Korteweg-de Vries (KdV) equation is derived and the kink-antikink soliton solution is obtained near the critical point. The simulation results show that the stabilization is enhanced by the improvement.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Guangquan Lu ◽  
Bo Cheng ◽  
Yunpeng Wang ◽  
Qingfeng Lin

This study attempts to elucidate individual car-following behavior using risk homeostasis theory (RHT). On the basis of this theory and the stimulus-response concept, we develop a desired safety margin (DSM) model. Safety margin, defined as the level of perceived risk in car-following processes, is proposed and considered to be a stimulus parameter. Acceleration is assessed in accordance with the difference between the perceived safety margin (perceived level of risk) and desired safety margin (acceptable level of risk) of a driver in a car-following situation. Sixty-three cases selected from Next Generation Simulation (NGSIM) are used to calibrate the parameters of the proposed model for general car-following behavior. Other eight cases with two following cars taken from NGSIM are used to validate the model. A car-following case with stop-and-go processes is also used to demonstrate the performance of the proposed model. The simulation results are then compared with the calculations derived using the Gazis-Herman-Rothery (GHR) model. As a result, the DSM and GHR models yield similar results and the proposed model is effective for simulation of car following. By adjusting model parameters, the proposed model can simulate different driving behaviors. The proposed model gives a new way to explain car-following process by RHT.


Author(s):  
Da Yang ◽  
Liling Zhu ◽  
Yun Pu

Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.


Sign in / Sign up

Export Citation Format

Share Document