THERMAL INVESTIGATION OF COMMON 2D FETs AND NEW GENERATION OF 3D FETs USING BOLTZMANN TRANSPORT EQUATION IN NANOSCALE

2013 ◽  
Vol 24 (09) ◽  
pp. 1350064 ◽  
Author(s):  
R. S. SAMIAN ◽  
A. ABBASSI ◽  
J. GHAZANFARIAN

The thermal performance of two-dimensional (2D) field-effect transistors (FET) is investigated frequently by solving the Fourier heat diffusion law and the Boltzmann transport equation (BTE). With the introduction of the new generation of 3D FETs in which their thickness is less than the phonon mean-free-path it is necessary to carefully simulate the thermal performance of such devices. This paper numerically integrates the BTE in common 2D transistors including planar single layer and Silicon-On-Insulator (SOI) transistor, and the new generation of 3D transistors including FinFET and Tri-Gate devices. In order to decrease the directional dependency of results in 3D simulations; the Legendre equal-weight (PN-EW) quadrature set has been employed. It is found that if similar switching time is assumed for 3D and 2D FETs while the new generation of 3D FETs has less net energy consumption, they have higher hot-spot temperature. The results show continuous heat flux distribution normal to the silicon/oxide interface while the temperature jump is seen at the interface in double layer transistors.

Author(s):  
Keivan Etessam-Yazdani ◽  
Sadegh M. Sadeghipour ◽  
Mehdi Asheghi

The performance and reliability of sub-micron semiconductor transistors demands accurate modeling of electron and phonon transport at nanoscales. The continued downscaling of the critical dimensions, introduces hotspots, inside transistors, with dimensions much smaller than phonon mean free path. This phenomenon, known as localized heating effect, results in a relatively high temperature at the hotspot that cannot be predicted using heat diffusion equation. While the contribution of the localized heating effect to the total device thermal resistance is significant during the normal operation of transistors, it has even greater implications for the thermoelectrical behavior of the device during an electrostatic discharge (ESD) event. The Boltzmann transport equation (BTE) can be used to capture the ballistic phonon transport in the vicinity of a hot spot but many of the existing solutions are limited to the one-dimensional and simple geometry configurations. We report our initial progress in solving the two dimensional Boltzmann transport equation for a hot spot in an infinite media (silicon) with constant temperature boundary condition and uniform heat generation configuration.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Ajit K. Vallabhaneni ◽  
Liang Chen ◽  
Man P. Gupta ◽  
Satish Kumar

Several studies have validated that diffusive Fourier model is inadequate to model thermal transport at submicron length scales. Hence, Boltzmann transport equation (BTE) is being utilized to improve thermal predictions in electronic devices, where ballistic effects dominate. In this work, we investigated the steady-state thermal transport in a gallium nitride (GaN) film using the BTE. The phonon properties of GaN for BTE simulations are calculated from first principles—density functional theory (DFT). Despite parallelization, solving the BTE is quite expensive and requires significant computational resources. Here, we propose two methods to accelerate the process of solving the BTE without significant loss of accuracy in temperature prediction. The first one is to use the Fourier model away from the hot-spot in the device where ballistic effects can be neglected and then couple it with a BTE model for the region close to hot-spot. The second method is to accelerate the BTE model itself by using an adaptive model which is faster to solve as BTE for phonon modes with low Knudsen number is replaced with a Fourier like equation. Both these methods involve choosing a cutoff parameter based on the phonon mean free path (mfp). For a GaN-based device considered in the present work, the first method decreases the computational time by about 70%, whereas the adaptive method reduces it by 60% compared to the case where full BTE is solved across the entire domain. Using both the methods together reduces the overall computational time by more than 85%. The methods proposed here are general and can be used for any material. These approaches are quite valuable for multiscale thermal modeling in solving device level problems at a faster pace without a significant loss of accuracy.


2014 ◽  
Vol 185 (6) ◽  
pp. 1747-1758 ◽  
Author(s):  
Wu Li ◽  
Jesús Carrete ◽  
Nebil A. Katcho ◽  
Natalio Mingo

2008 ◽  
Vol 35 (6) ◽  
pp. 1098-1108 ◽  
Author(s):  
A.G. Buchan ◽  
C.C. Pain ◽  
M.D. Eaton ◽  
R.P. Smedley-Stevenson ◽  
A.J.H. Goddard

2018 ◽  
Vol 777 ◽  
pp. 421-425 ◽  
Author(s):  
Chhengrot Sion ◽  
Chung Hao Hsu

Many methods have been developed to predict the thermal conductivity of the material. Heat transport is complex and it contains many unknown variables, which makes the thermal conductivity hard to define. The iterative solution of Boltzmann transport equation (BTE) can make the numerical calculation and the nanoscale study of heat transfer possible. Here, we review how to apply the iterative method to solve BTE and many linear systems. This method can compute a sequence of progressively accurate iteration to approximate the solution of BTE.


Sign in / Sign up

Export Citation Format

Share Document