Biomolecular Computing Realized in Parallel Flow Systems: Enzyme-Based Double Feynman Logic Gate

2015 ◽  
Vol 25 (01) ◽  
pp. 1540001 ◽  
Author(s):  
Brian E. Fratto ◽  
Nataliia Guz ◽  
Evgeny Katz

An enzyme system organized in a flow device with three parallel channels was used to mimic a reversible Double Feynman Gate (DFG) with three input and three output signals. Reversible conversion of NAD+ and NADH cofactors was used to perform XOR logic operations, while biocatalytic oxidation of NADH resulted in Identity operation working in parallel. The first biomolecular realization of a DFG gate is promising for integrating into complex biomolecular networks operating in future unconventional biocomputing systems, as well as for novel biosensor applications.

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6494
Author(s):  
Lianlian Fu ◽  
Deshuai Yu ◽  
Dijuan Zou ◽  
Hao Qian ◽  
Youhui Lin

Recently, the design and development of nanozyme-based logic gates have received much attention. In this work, by engineering the stability of the nanozyme-catalyzed product, we demonstrated that the chromogenic system of 3, 3′, 5, 5′-tetramethylbenzidine (TMB) can act as a visual output signal for constructing various Boolean logic operations. Specifically, cerium oxide or ferroferric oxide-based nanozymes can catalyze the oxidation of colorless TMB to a blue color product (oxTMB). The blue-colored solution of oxTMB could become colorless by some reductants, including the reduced transition state of glucose oxidase and xanthine oxidase. As a result, by combining biocatalytic reactions, the color change of oxTMB could be controlled logically. In our logic systems, glucose oxidase, β-galactosidase, and xanthine oxidase acted as inputs, and the state of oxTMB solution was used as an output. The logic operation produced a colored solution as the readout signal, which was easily distinguished with the naked eye. More importantly, the study of such a decolorization process allows the transformation of previously designed AND and OR logic gates into NAND and NOR gates. We propose that this work may push forward the design of novel nanozyme-based biological gates and help us further understand complex physiological pathways in living systems.


1996 ◽  
Vol 8 (1) ◽  
pp. 166-168 ◽  
Author(s):  
Bo Lu ◽  
Yin-Chen Lu ◽  
J. Cheng ◽  
M.J. Hafich ◽  
J. Klem ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
J. A. García-Merino ◽  
E. Feria-Reyes ◽  
C. Mercado-Zúñiga ◽  
M. Trejo-Valdez ◽  
C. R. Torres-San Miguel ◽  
...  

Two-input binary exclusive-or logic operations were presented by the assistance of multiwall carbon nanotubes in a double-stage optical Kerr gate scheme with two control beams. The samples were prepared by the aerosol pyrolysis method and decorated by platinum nanoparticles using a chemical vapor deposition technique. The nanostructures were suspended in ethanol to obtain carbon/metal nanoinks with different concentrations and then randomly distributed networks integrated in thin film form were fabricated. Polarization-selectable functions were obtained in the double-stage scheme by using nanosecond third-order nonlinear optical effects at 532 nm wavelength exhibited by the samples. Potential applications for ultrafast identification and encryption of nonlinear optical signals were discussed.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1778
Author(s):  
Dominika Babička Fialová ◽  
Zdeněk Jegla

Requirements of modern process and power technologies for compact and highly efficient equipment for transferring large heat fluxes lead to designing these apparatuses as dense parallel flow systems, ranging from conventional to minichannel dimensions according to the specific industrial application. To avoid operating issues in such complex equipment, it is vital to identify not only the local distribution of heat flux in individual parts of the heat transfer surface but also the uniformity of fluid flow distribution inside individual parallel channels of the flow system. A composite modelling system is currently being developed for accurate design of such complex heat transfer equipment. The modeling approach requires a flow distribution model enabling to yield accurate-enough predictions in reasonable time frames. The paper presents the results of complex experimental and modeling investigation of fluid flow distribution in dividing headers of tubular-type equipment. Different modeling approaches were examined on a set of header geometries. Predictions obtained via analytical and numerical models were validated using data from the experiments conducted on additively manufactured header samples. Two case studies employing parallel flow systems (mini-scale systems and a conventional-size heat exchanger) demonstrated the applicability of the distribution model and the accuracy of the composite modelling system.


2006 ◽  
Vol 21 (24) ◽  
pp. 1837-1850 ◽  
Author(s):  
HOLGER F. HOFMANN ◽  
RYO OKAMOTO ◽  
SHIGEKI TAKEUCHI

Quantum logic gates can perform calculations much more efficiently than their classical counterparts. However, the level of control needed to obtain a reliable quantum operation is correspondingly higher. In order to evaluate the performance of experimental quantum gates, it is therefore necessary to identify the essential features that indicate quantum coherent operation. In this paper, we show that an efficient characterization of an experimental device can be obtained by investigating the classical logic operations on a pair of complementary basis sets. It is then possible to obtain reliable predictions about the quantum coherent operations of the gate such as entanglement generation and Bell state discrimination even without performing these operations directly.


2016 ◽  
Vol 15 (04) ◽  
pp. 1620001 ◽  
Author(s):  
Laszlo B. Kish

In a recent paper, [M. López-Suárez, I. Neri and L. Gammaitoni, Sub-[Formula: see text] micro-electromechanical irreversible logic gate, Nat. Commun. 7 (2016) 12068] the authors claimed that they demonstrated sub-[Formula: see text] energy dissipation at elementary logic operations. However, the argumentation is invalid because it neglects the dominant source of energy dissipation, namely, the charging energy of the capacitance of the input electrode, which totally dissipates during the full (0-1-0) cycle of logic values. The neglected dissipation phenomenon is identical with the mechanism that leads to the lower physical limit of dissipation (70–100 [Formula: see text] in today’s microprocessors (CMOS logic) and in any other system with thermally activated errors thus the same limit holds for the new scheme, too.


2019 ◽  
Vol 5 (2) ◽  
pp. eaau2124 ◽  
Author(s):  
Jinyoung Seo ◽  
Sungi Kim ◽  
Ha H. Park ◽  
Da Yeon Choi ◽  
Jwa-Min Nam

Using nanoparticles as substrates for computation enables algorithmic and autonomous controls of their unique and beneficial properties. However, scalable architecture for nanoparticle-based computing systems is lacking. Here, we report a platform for constructing nanoparticle logic gates and circuits at the single-particle level on a supported lipid bilayer. Our “lipid nanotablet” platform, inspired by cellular membranes that are exploited to compartmentalize and control signaling networks, uses a lipid bilayer as a chemical circuit board and nanoparticles as computational units. On a lipid nanotablet, a single-nanoparticle logic gate senses molecules in solution as inputs and triggers particle assembly or disassembly as an output. We demonstrate a set of Boolean logic operations, fan-in/fan-out of logic gates, and a combinational logic circuit such as a multiplexer. We envisage that our approach to modularly implement nanoparticle circuits on a lipid bilayer will create new paradigms and opportunities in molecular computing, nanoparticle circuits, and systems nanoscience.


Author(s):  
João Lucas Lobato Soares ◽  
George Stephane Queiroz de Oliveira ◽  
Marcelo Lucas Souza Silva ◽  
Samuel Silva ◽  
Gianfranco Stieven

Sign in / Sign up

Export Citation Format

Share Document