Two Antifungal Components Isolated from Fructus Psoraleae and Folium Eucalypti Globuli by Bioassay-Guided Purification

2010 ◽  
Vol 38 (05) ◽  
pp. 1005-1014 ◽  
Author(s):  
Kit-Man Lau ◽  
Lai-Hong Fu ◽  
Ling Cheng ◽  
Chun-Wai Wong ◽  
Yin-Lai Wong ◽  
...  

Fructus Psoraleae and Folium Eucalypti Globuli have long been used as Chinese medicines to treat various ailments such as asthma, eczema and dermatomycosis. In previous studies, their antifungal activities were demonstrated. The aim of the present study was to isolate active antidermatophytic compounds from their ethanolic extracts by means of bioassay-guided purification. Guided by the inhibitory activities on Trichophyton mentagrophytes, Trichophyton rubrum and Paecilomyces variotii, bakuchiol was isolated from the n-hexane fraction of Fructus Psoraleae whilst macrocarpal C was isolated from the n-hexane fraction of Folium Eucalypti Globuli. Both pure compounds could effectively inhibit the growth of dermatophytes in vitro. This is the first paper to report the isolation and identification of active antidermatophytic compounds from Fructus Psoraleae and Folium Eucalypti Globuli by the bioassay-guided purification.

2021 ◽  
Vol 1 (4) ◽  
pp. 135-152
Author(s):  
Thiago Henrique Lemes ◽  
Guilherme Silva Torrezan ◽  
Carlos Roberto Polaquini ◽  
Luis Octavio Regasini ◽  
Bianca Gottardo de Almeida ◽  
...  

Onychomycoses are nail infections caused primarily by dermatophytes fungi, yeasts, and other filamentous fungi, characterized by persistent infections, prolonged therapy, and high recurrence rates. In clinical practice, some of these occurrences present two or more microorganisms, and the interactions among them can change the chemical environment mediated by small diffusible molecules, producing a competitive niche. The aim of this study was to evaluate the antifungal activity of individual extracts of pure cultures of Candida albicans and C. parapsilosis against dermatophytes. To obtain the fungal extracts, cultures were filtered through a 0.2 μm membrane and submitted to liquid-liquid extraction using ethyl acetate. The Minimal Inhibitory Concentration (MIC) of each extract was evaluated by broth microdilution method and checkerboard assay with fluconazole against clinical isolates of Trichophyton rubrum and T. mentagrophytes. The invertebrate model of Galleria mellonella was used to evaluate the toxicity of the extracts. As results, the extracts of C. albicans and C. parapsilosis showed antifungal activity with MICs between 31,2 – 2000 μg/mL. In association with fluconazole, synergistic effect was detected for all combinations. The extracts presented low toxicity in G. mellonella. In the future, isolation and identification of the extract compounds may allow new therapeutic approaches in the control of fungal infections.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 559
Author(s):  
Tatiana de los Ángeles Mosquera Tayupanta ◽  
Sandra Elizabeth Ayala Valarezo ◽  
Tatiana Alexandra Vasquez Villareal ◽  
María Belén Montaluisa Álvarez

Background: Currently, there is a trend towards using natural and ethnopharmacological species with therapeutic potential. This investigation evaluated the antifungal activity of two species in the Ecuadorian Andes, which are used in treating dermatomycosis: Ambrosia arborescens Mill. (Marco) and Aristeguietia glutinosa Lam. (Matico). Methods: We worked with seven concentrations (100 to 700ppm) of Ambrosia arborescens Mill. extract and ten concentrations (0.5 to 5%) of essential oil (EO) of Aristeguietia glutinosa Lam. on Trichophyton mentagrophytes ATCC 9533, Trichophyton rubrum ATCC 28188, Microsporum canis ATCC 36299 and Candida albicans ATCC 10231. The methodology used was a modified version of the Kirby-Bauer method, using diffusion in agar wells. Results: The Tukey test, after the one-way Anova, determined effective concentrations of EO: 5% for Trichophyton mentagrophytes, 4.5% for Trichophyton rubrum, 5% for Microsporum canis and 2% for Candida albicans. In the extracts, the concentration of 700ppm was used for Trichophyton mentagrophytes, Trichophyton rubrum, and 600ppm for Microsporum canis and Candida albicans. Conclusions: The evaluation of the antifungal activity of the Ambrosia arborescens extract showed inhibition in the studied dermatophytes in each one of the planted concentrations (100 to 700ppm). The evaluation of the antifungal activity of Aristeguietia glutinosa EO showed inhibition in the studied dermatophytes in each of the planted concentrations (0.5 to 5%).


2021 ◽  
Vol 15 (4) ◽  
pp. 254-260
Author(s):  
Penghua Shu ◽  
Yamin Li ◽  
Yuehui Luo ◽  
Shujing Cai ◽  
Yingying Fei ◽  
...  

A phytochemical study on the flowers of Cercis glabra ‘Spring-1’ led to the isolation and identification of twelve compounds, including one new compound named as 1-O-α-l-rhamnosyl-(E)-phytol (1) and eleven known compounds. Their structures were elucidated based on physical data analysis, including HR-ESI-MS, NMR, UV, IR, and acid hydrolysis. All compounds were screened for in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl method. Compounds 4 and 5 exhibited obvious DPPH radical scavenging activities. All the isolates were tested for their inhibitory effects on mushroom tyrosinase, and compounds 6, 7, 10 and 11 showed moderate tyrosinase inhibitory activities.


2015 ◽  
Vol 32 (2) ◽  
pp. 83-87 ◽  
Author(s):  
María Cristina Díaz Jarabrán ◽  
Pablo Díaz González ◽  
José Espinoza Rodríguez ◽  
Alfonso Javier Carrillo Muñoz

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
K R Reddy ◽  
S Ram Reddy

Investigations on antifungal drug susceptibility were carried out on 90 clinical isolates of Trichophyton rubrum, and Trichophyton mentagrophytes with four antifungal drugs, namely griseofulvin, fluconazole, itraconazole and terbinafine as suggested by National Committee for Clinical Laboratory Standards (NCCLS) M27–A (1997) document by broth macrodilution method to standardize in vitro antifungal susceptibility testing and to find out the Minimum Inhibitory Concentration (MIC) of the drugs. In this study, terbinafine was found to be the most efficient drug for all isolates. Terbinafine had the lowest MIC range of 0.001 g/ml to 0.09 g/ml and MIC50 was low at 0.005 g/ml and MIC90 was also low at 0.04 g/ml against T.rubrum; and MIC range of 0.001μg/ml to 0.19μg/ml with a MIC50 of 0.01μg/ml and MIC90 at 0.09μg/ml against T.mentagrophytes. Itraconazole showed antifungal activity superior to that of fluconazole, with a MIC range of 0.04g/ml to 1.56g/ml, with MIC50 at 0.19μg/ml and MIC90 at 1.56g/ml against T.rubrum; and MIC range of 0.04μg/ml to 1.56μg/ml, with MIC50 at 0.19μg/ml and MIC90 at 0.78μg/ml against T.mentagrophytes. Griseofulvin appears to be still a potent drug for management of dermatophytoses. Griseofulvin had a MIC range of 0.15g/ml to 5.07 g/ml with MIC50 at1.26 g/ml and MIC90 at 2.53 g/ml against T.rubrum; and MIC range of 0.31μg/ml to 5.07μg/ml with MIC50 at 1.26μg/ml and MIC90 at 2.53μg/ml against T.mentagrophytes. Fluconazole showed a high MIC range of 0.19 g/ml to 50 g/ml and MIC50 was high at 1.56g/ml and MIC90 was also high at 12.5 g/ml against T.rubrum; and a high MIC range of 0.09μg/ml to 25.0μg/ml, with MIC50 at 1.56μg/ml and MIC90 at 12.5μg/ml towards T.mentagrophytes. The technique was found to be easy to perform and reliable with consistent results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tomas Kudera ◽  
Barbora Fiserova ◽  
Marie Korytakova ◽  
Ivo Doskocil ◽  
Hana Salmonova ◽  
...  

Bacterial diarrhea remains a global health problem, especially in developing tropical countries. Moreover, dysbiosis caused by diarrheagenic bacteria and inappropriate antimicrobial treatment has been associated with intestinal carcinogenesis. Despite the rich tradition of the use of herbs for the treatment of gastrointestinal disorders in Cambodian and Philippine folk medicine, many of them have not yet been systematically studied for their in vitro selective inhibitory effects on intestinal bacteria and cells. In the present study, in vitro inhibitory activities of 35 ethanolic extracts derived from 32 Cambodian and Philippine medicinal plants were determined by broth microdilution method against 12 pathogenic bacteria. Furthermore, cytotoxicity against intestinal cancer cells (Caco-2 and HT-29) using thiazolyl blue tetrazolium bromide cytotoxicity assay and safety to six beneficial intestinal bacteria (bifidobacteria and lactobacilli) and intestinal normal cells (FHs 74 Int) were determined for the antimicrobially active extracts. Selectivity indices (SIs) were calculated among the averages of minimum inhibitory concentrations (MICs), half-maximal inhibitory concentrations (IC50), and 80% inhibitory concentrations of proliferation (IC80) for each type of the tested agents. The extracts of Artocarpus blancoi (Elmer) Merr. (Moraceae), Ancistrocladus tectorius (Lour.) Merr. (Ancistrocladaceae), and Pentacme siamensis (Miq.) Kurz (Dipterocarpaceae) produced significant growth-inhibitory effects (MICs = 32–512 μg/ml) against intestinal pathogenic bacteria at the concentrations nontoxic to normal intestinal cells (IC80 values >512 μg/ml; SIs = 0.11–0.2). Moreover, the extract of P. siamensis (Miq.) Kurz was relatively safe to beneficial bacteria (MICs ≥512 μg/ml; SI = 0.1), and together with A. blancoi (Elmer) Merr., they selectively inhibited intestinal cancer cells (IC50 values ≥51.98 ± 19.79 μg/ml; SIs = 0.3 and 0.6). Finally, a strong selective antiproliferative effect on cancer cells (IC50 values 37.89 ± 2.68 to 130.89 ± 13.99 μg/ml; SIs = 0.5) was exerted by Ehretia microphylla Lam. (Boraginaceae), Lagerstroemia cochinchinensis Pierre ex Gagnep. (Lythraceae), and Melastoma saigonense (Kuntze) Merr. (Melastomataceae) (leaves with flower buds). The results suggest that the above-mentioned species are promising materials for the development of new selective antibacterial and antiproliferative agents for the treatment of infectious diarrhea and associated intestinal cancer diseases. However, further research is needed regarding the isolation and identification of their active constituents.


2013 ◽  
Vol 57 (4) ◽  
pp. 1610-1616 ◽  
Author(s):  
William J. Jo Siu ◽  
Yoshiyuki Tatsumi ◽  
Hisato Senda ◽  
Radhakrishnan Pillai ◽  
Takashi Nakamura ◽  
...  

ABSTRACTOnychomycosis is a common fungal nail infection in adults that is difficult to treat. Thein vitroantifungal activity of efinaconazole, a novel triazole antifungal, was evaluated in recent clinical isolates ofTrichophyton rubrum,Trichophyton mentagrophytes, andCandida albicans, common causative onychomycosis pathogens. In a comprehensive survey of 1,493 isolates, efinaconazole MICs againstT. rubrumandT. mentagrophytesranged from ≤0.002 to 0.06 μg/ml, with 90% of isolates inhibited (MIC90) at 0.008 and 0.015 μg/ml, respectively. Efinaconazole MICs against 105C. albicansisolates ranged from ≤0.0005 to >0.25 μg/ml, with 50% of isolates inhibited (MIC50) by 0.001 and 0.004 μg/ml at 24 and 48 h, respectively. Efinaconazole potency against these organisms was similar to or greater than those of antifungal drugs currently used in onychomycosis, including amorolfine, ciclopirox, itraconazole, and terbinafine. In 13T. rubrumtoenail isolates from onychomycosis patients who were treated daily with topical efinaconazole for 48 weeks, there were no apparent increases in susceptibility, suggesting low potential for dermatophytes to develop resistance to efinaconazole. The activity of efinaconazole was further evaluated in another 8 dermatophyte, 15 nondermatophyte, and 10 yeast species (a total of 109 isolates from research repositories). Efinaconazole was active againstTrichophyton,Microsporum,Epidermophyton,Acremonium,Fusarium,Paecilomyces,Pseudallescheria,Scopulariopsis,Aspergillus,Cryptococcus,Trichosporon, andCandidaand compared favorably to other antifungal drugs. In conclusion, efinaconazole is a potent antifungal with a broad spectrum of activity that may have clinical applications in onychomycosis and other mycoses.


Sign in / Sign up

Export Citation Format

Share Document