Salvianolic Acid A Prevents the Pathological Progression of Hepatic Fibrosis in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats

2014 ◽  
Vol 42 (05) ◽  
pp. 1183-1198 ◽  
Author(s):  
Guifen Qiang ◽  
Xiuying Yang ◽  
Qi Xuan ◽  
Lili Shi ◽  
Hengai Zhang ◽  
...  

Type 2 diabetes patients have an increased risk of developing hepatic fibrosis. Salvianolic acid A (SalA) has been reported to be a strong polyphenolic anti-oxidant and free radical scavenger. The aim of the present study was to evaluate the effect of SalA on the pathological progression of hepatic fibrosis in high-fat diet (HFD)-fed and streptozotocin (STZ)-induced diabetic rats and to clarify the underlying mechanisms. Type 2 diabetic animal model with hepatic fibrosis was developed by a high-sucrose, HFD and low-dose STZ injection (i.p.). Diabetic rats were randomly divided into SalA group (0.3 mg/kg/day) and diabetic control groups fed with a HFD. After administration for four months, SalA reversed the hyperlipidemia and reduced hepatic triglyceride (TG). Hematoxylin–Eosin (HE) and Picro acid-Sirius red staining results indicated that SalA significantly alleviated the lesions of hepatic steatosis and fibrosis, with the reduction of type I and III collagens. The expression of α-smooth-muscle-actin (α-SMA) and transforming growth factor β1 (TGF-β1) in the liver were markedly down-regulated by SalA treatment. TUNEL staining showed that SalA reduced apoptosis in hepatocytes. In addition, SalA improved hepatic mitochondrial respiratory function in diabetic rats. Taken together, these findings demonstrated that SalA could prevent the pathological progression of hepatic fibrosis in HFD-fed and STZ-induced diabetic rats. The underlying mechanisms may be involved in reducing oxidative stress, suppressing α-SMA and TGF-β1 expression, as well as exerting anti-apoptotic and mitochondria-protective effects.

2014 ◽  
Vol 42 (01) ◽  
pp. 95-108 ◽  
Author(s):  
Feng Fu ◽  
Fei Tian ◽  
Heping Zhou ◽  
Weifeng Lv ◽  
Ru Tie ◽  
...  

Obese patients with type 2 diabetes mellitus (T2DM), which is characterized by hyperglycemia, are liable to more severe myocardial infarction. Semen Cassiae is proven to reduce serum lipid levels. This study investigated whether the Semen Cassiae extract (SCE) reduces myocardial ischemia and reperfusion (MI/R) injury with or without diabetes and the underlying mechanisms. The high-fat diet-fed streptozotocin (HFD-STZ) rat model was created as a T2DM model. Normal and DM rats received SCE treatment orally (10 mg/kg/day) for one week. Subsequently these animals were subjected to MI/R. Compared with the normal animals, DM rats showed increased plasma total cholesterol (TC) and triacylglycerol (TG), and more severe MI/R injury and cardiac functional impairment. SCE treatment significantly reduced the plasma TC and TG, improved the instantaneous first derivation of left ventricle pressure and reduced infarct size, decreased plasma creatine kinase and lactate dehydrogenase levels, and apoptosis index at the end of reperfusion in diabetic rats. Moreover, SCE treatment increased the antiapoptotic protein Akt and ERK1/2 phosphorylation levels. Pretreatment with a PI3K inhibitor wortmannin or an ERK1/2 inhibitor PD98059 not only blocked Akt and ERK1/2 phosphorylation respectively, but also inhibited the cardioprotective effects of SCE. However, SCE treatment did not show any effects on the MI/R injury in the normal rats. Our data suggest that SCE effectively improves myocardial function and reduces MI/R-induced injury in diabetic but not normal animals, which is possibly attributed to the reduced TC/TG levels and the triggered cell survival signaling Akt and ERK1/2.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Kira V. Derkach ◽  
Vera M. Bondareva ◽  
Oxana V. Chistyakova ◽  
Lev M. Berstein ◽  
Alexander O. Shpakov

In the last years the treatment of type 2 diabetes mellitus (DM2) was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg) on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS) at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC) activity in the hypothalamus and normalized AC stimulation byβ-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.


2012 ◽  
Vol 132 (1) ◽  
pp. 186-193 ◽  
Author(s):  
V.P. Veerapur ◽  
K.R. Prabhakar ◽  
B.S. Thippeswamy ◽  
Punit Bansal ◽  
K.K. Srinivasan ◽  
...  

Life Sciences ◽  
2016 ◽  
Vol 153 ◽  
pp. 100-117 ◽  
Author(s):  
Antony Stalin ◽  
Santiagu Stephen Irudayaraj ◽  
Gopalsamy Rajiv Gandhi ◽  
Kedike Balakrishna ◽  
Savarimuthu Ignacimuthu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document